%include {
/*
** Zero-Clause BSD license:
**
** Copyright (C) 2020-09-01 by D. Richard Hipp <drh@sqlite.org>
**
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted.
**
****************************************************************************
**
** This software translates a PIC-inspired diagram language into SVG.
**
** PIKCHR (pronounced like "picture") is *mostly* backwards compatible
** with legacy PIC, though some features of legacy PIC are removed
** (for example, the "sh" command is removed for security) and
** many enhancements are added.
**
** PIKCHR is designed for use in an internet facing web environment.
** In particular, PIKCHR is designed to safely generate benign SVG from
** source text that provided by a hostile agent.
**
** This code was originally written by D. Richard Hipp using documentation
** from prior PIC implementations but without reference to prior code.
** All of the code in this project is original.
**
** This file implements a C-language subroutine that accepts a string
** of PIKCHR language text and generates a second string of SVG output that
** renders the drawing defined by the input. Space to hold the returned
** string is obtained from malloc() and should be freed by the caller.
** NULL might be returned if there is a memory allocation error.
**
** If there are errors in the PIKCHR input, the output will consist of an
** error message and the original PIKCHR input text (inside of <pre>...</pre>).
**
** The subroutine implemented by this file is intended to be stand-alone.
** It uses no external routines other than routines commonly found in
** the standard C library.
**
****************************************************************************
** COMPILING:
**
** The original source text is a mixture of C99 and "Lemon"
** (See https://sqlite.org/src/file/doc/lemon.html). Lemon is an LALR(1)
** parser generator program, similar to Yacc. The grammar of the
** input language is specified in Lemon. C-code is attached. Lemon
** runs to generate a single output file ("pikchr.c") which is then
** compiled to generate the Pikchr library. This header comment is
** preserved in the Lemon output, so you might be reading this in either
** the generated "pikchr.c" file that is output by Lemon, or in the
** "pikchr.y" source file that is input into Lemon. If you make changes,
** you should change the input source file "pikchr.y", not the
** Lemon-generated output file.
**
** Basic compilation steps:
**
** lemon pikchr.y
** cc pikchr.c -o pikchr.o
**
** Add -DPIKCHR_SHELL to add a main() routine that reads input files
** and sends them through Pikchr, for testing. Add -DPIKCHR_FUZZ for
** -fsanitizer=fuzzer testing.
**
****************************************************************************
** IMPLEMENTATION NOTES (for people who want to understand the internal
** operation of this software, perhaps to extend the code or to fix bugs):
**
** Each call to pikchr() uses a single instance of the Pik structure to
** track its internal state. The Pik structure lives for the duration
** of the pikchr() call.
**
** The input is a sequence of objects or "statements". Each statement is
** parsed into a PObj object. These are stored on an extensible array
** called PList. All parameters to each PObj are computed as the
** object is parsed. (Hence, the parameters to a PObj may only refer
** to prior statements.) Once the PObj is completely assembled, it is
** added to the end of a PList and never changes thereafter - except,
** PObj objects that are part of a "[...]" block might have their
** absolute position shifted when the outer [...] block is positioned.
** But apart from this repositioning, PObj objects are unchanged once
** they are added to the list. The order of statements on a PList does
** not change.
**
** After all input has been parsed, the top-level PList is walked to
** generate output. Sub-lists resulting from [...] blocks are scanned
** as they are encountered. All input must be collected and parsed ahead
** of output generation because the size and position of statements must be
** known in order to compute a bounding box on the output.
**
** Each PObj is on a "layer". (The common case is that all PObj's are
** on a single layer, but multiple layers are possible.) A separate pass
** is made through the list for each layer.
**
** After all output is generated, the Pik object and all the PList
** and PObj objects are deallocated and the generated output string is
** returned. Upon any error, the Pik.nErr flag is set, processing quickly
** stops, and the stack unwinds. No attempt is made to continue reading
** input after an error.
**
** Most statements begin with a class name like "box" or "arrow" or "move".
** There is a class named "text" which is used for statements that begin
** with a string literal. You can also specify the "text" class.
** A Sublist ("[...]") is a single object that contains a pointer to
** its substatements, all gathered onto a separate PList object.
**
** Variables go into PVar objects that form a linked list.
**
** Each PObj has zero or one names. Input constructs that attempt
** to assign a new name from an older name, for example:
**
** Abc: Abc + (0.5cm, 0)
**
** Statements like these generate a new "noop" object at the specified
** place and with the given name. As place-names are searched by scanning
** the list in reverse order, this has the effect of overriding the "Abc"
** name when referenced by subsequent objects.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include <assert.h>
#define count(X) (sizeof(X)/sizeof(X[0]))
#ifndef M_PI
# define M_PI 3.1415926535897932385
#endif
/* Limit the number of tokens in a single script to avoid run-away
** macro expansion attacks. See forum post
** https://pikchr.org/home/forumpost/ef8684c6955a411a
*/
#ifndef PIKCHR_TOKEN_LIMIT
# define PIKCHR_TOKEN_LIMIT 100000
#endif
/* Tag intentionally unused parameters with this macro to prevent
** compiler warnings with -Wextra */
#define UNUSED_PARAMETER(X) (void)(X)
typedef struct Pik Pik; /* Complete parsing context */
typedef struct PToken PToken; /* A single token */
typedef struct PObj PObj; /* A single diagram object */
typedef struct PList PList; /* A list of diagram objects */
typedef struct PClass PClass; /* Description of statements types */
typedef double PNum; /* Numeric value */
typedef struct PRel PRel; /* Absolute or percentage value */
typedef struct PPoint PPoint; /* A position in 2-D space */
typedef struct PVar PVar; /* script-defined variable */
typedef struct PBox PBox; /* A bounding box */
typedef struct PMacro PMacro; /* A "define" macro */
/* Compass points */
#define CP_N 1
#define CP_NE 2
#define CP_E 3
#define CP_SE 4
#define CP_S 5
#define CP_SW 6
#define CP_W 7
#define CP_NW 8
#define CP_C 9 /* .center or .c */
#define CP_END 10 /* .end */
#define CP_START 11 /* .start */
/* Heading angles corresponding to compass points */
static const PNum pik_hdg_angle[] = {
/* none */ 0.0,
/* N */ 0.0,
/* NE */ 45.0,
/* E */ 90.0,
/* SE */ 135.0,
/* S */ 180.0,
/* SW */ 225.0,
/* W */ 270.0,
/* NW */ 315.0,
/* C */ 0.0,
};
/* Built-in functions */
#define FN_ABS 0
#define FN_COS 1
#define FN_INT 2
#define FN_MAX 3
#define FN_MIN 4
#define FN_SIN 5
#define FN_SQRT 6
/* Text position and style flags. Stored in PToken.eCode so limited
** to 15 bits. */
#define TP_LJUST 0x0001 /* left justify...... */
#define TP_RJUST 0x0002 /* ...Right justify */
#define TP_JMASK 0x0003 /* Mask for justification bits */
#define TP_ABOVE2 0x0004 /* Position text way above PObj.ptAt */
#define TP_ABOVE 0x0008 /* Position text above PObj.ptAt */
#define TP_CENTER 0x0010 /* On the line */
#define TP_BELOW 0x0020 /* Position text below PObj.ptAt */
#define TP_BELOW2 0x0040 /* Position text way below PObj.ptAt */
#define TP_VMASK 0x007c /* Mask for text positioning flags */
#define TP_BIG 0x0100 /* Larger font */
#define TP_SMALL 0x0200 /* Smaller font */
#define TP_XTRA 0x0400 /* Amplify TP_BIG or TP_SMALL */
#define TP_SZMASK 0x0700 /* Font size mask */
#define TP_ITALIC 0x1000 /* Italic font */
#define TP_BOLD 0x2000 /* Bold font */
#define TP_MONO 0x4000 /* Monospace font family */
#define TP_FMASK 0x7000 /* Mask for font style */
#define TP_ALIGN 0x8000 /* Rotate to align with the line */
/* An object to hold a position in 2-D space */
struct PPoint {
PNum x, y; /* X and Y coordinates */
};
static const PPoint cZeroPoint = {0.0,0.0};
/* A bounding box */
struct PBox {
PPoint sw, ne; /* Lower-left and top-right corners */
};
/* An Absolute or a relative distance. The absolute distance
** is stored in rAbs and the relative distance is stored in rRel.
** Usually, one or the other will be 0.0. When using a PRel to
** update an existing value, the computation is usually something
** like this:
**
** value = PRel.rAbs + value*PRel.rRel
**
*/
struct PRel {
PNum rAbs; /* Absolute value */
PNum rRel; /* Value relative to current value */
};
/* A variable created by the ID = EXPR construct of the PIKCHR script
**
** PIKCHR (and PIC) scripts do not use many varaibles, so it is reasonable
** to store them all on a linked list.
*/
struct PVar {
const char *zName; /* Name of the variable */
PNum val; /* Value of the variable */
PVar *pNext; /* Next variable in a list of them all */
};
/* A single token in the parser input stream
*/
struct PToken {
const char *z; /* Pointer to the token text */
unsigned int n; /* Length of the token in bytes */
short int eCode; /* Auxiliary code */
unsigned char eType; /* The numeric parser code */
unsigned char eEdge; /* Corner value for corner keywords */
};
/* Return negative, zero, or positive if pToken is less than, equal to
** or greater than the zero-terminated string z[]
*/
static int pik_token_eq(PToken *pToken, const char *z){
int c = strncmp(pToken->z,z,pToken->n);
if( c==0 && z[pToken->n]!=0 ) c = -1;
return c;
}
/* Extra token types not generated by LEMON but needed by the
** tokenizer
*/
#define T_PARAMETER 253 /* $1, $2, ..., $9 */
#define T_WHITESPACE 254 /* Whitespace of comments */
#define T_ERROR 255 /* Any text that is not a valid token */
/* Directions of movement */
#define DIR_RIGHT 0
#define DIR_DOWN 1
#define DIR_LEFT 2
#define DIR_UP 3
#define ValidDir(X) ((X)>=0 && (X)<=3)
#define IsUpDown(X) (((X)&1)==1)
#define IsLeftRight(X) (((X)&1)==0)
/* Bitmask for the various attributes for PObj. These bits are
** collected in PObj.mProp and PObj.mCalc to check for constraint
** errors. */
#define A_WIDTH 0x0001
#define A_HEIGHT 0x0002
#define A_RADIUS 0x0004
#define A_THICKNESS 0x0008
#define A_DASHED 0x0010 /* Includes "dotted" */
#define A_FILL 0x0020
#define A_COLOR 0x0040
#define A_ARROW 0x0080
#define A_FROM 0x0100
#define A_CW 0x0200
#define A_AT 0x0400
#define A_TO 0x0800 /* one or more movement attributes */
#define A_FIT 0x1000
/* A single graphics object */
struct PObj {
const PClass *type; /* Object type or class */
PToken errTok; /* Reference token for error messages */
PPoint ptAt; /* Reference point for the object */
PPoint ptEnter, ptExit; /* Entry and exit points */
PList *pSublist; /* Substructure for [...] objects */
char *zName; /* Name assigned to this statement */
PNum w; /* "width" property */
PNum h; /* "height" property */
PNum rad; /* "radius" property */
PNum sw; /* "thickness" property. (Mnemonic: "stroke width")*/
PNum dotted; /* "dotted" property. <=0.0 for off */
PNum dashed; /* "dashed" property. <=0.0 for off */
PNum fill; /* "fill" property. Negative for off */
PNum color; /* "color" property */
PPoint with; /* Position constraint from WITH clause */
char eWith; /* Type of heading point on WITH clause */
char cw; /* True for clockwise arc */
char larrow; /* Arrow at beginning (<- or <->) */
char rarrow; /* Arrow at end (-> or <->) */
char bClose; /* True if "close" is seen */
char bChop; /* True if "chop" is seen */
char bAltAutoFit; /* Always send both h and w into xFit() */
unsigned char nTxt; /* Number of text values */
unsigned mProp; /* Masks of properties set so far */
unsigned mCalc; /* Values computed from other constraints */
PToken aTxt[5]; /* Text with .eCode holding TP flags */
int iLayer; /* Rendering order */
int inDir, outDir; /* Entry and exit directions */
int nPath; /* Number of path points */
PPoint *aPath; /* Array of path points */
PObj *pFrom, *pTo; /* End-point objects of a path */
PBox bbox; /* Bounding box */
};
/* A list of graphics objects */
struct PList {
int n; /* Number of statements in the list */
int nAlloc; /* Allocated slots in a[] */
PObj **a; /* Pointers to individual objects */
};
/* A macro definition */
struct PMacro {
PMacro *pNext; /* Next in the list */
PToken macroName; /* Name of the macro */
PToken macroBody; /* Body of the macro */
int inUse; /* Do not allow recursion */
};
/* Each call to the pikchr() subroutine uses an instance of the following
** object to pass around context to all of its subroutines.
*/
struct Pik {
unsigned nErr; /* Number of errors seen */
unsigned nToken; /* Number of tokens parsed */
PToken sIn; /* Input Pikchr-language text */
char *zOut; /* Result accumulates here */
unsigned int nOut; /* Bytes written to zOut[] so far */
unsigned int nOutAlloc; /* Space allocated to zOut[] */
unsigned char eDir; /* Current direction */
unsigned int mFlags; /* Flags passed to pikchr() */
PObj *cur; /* Object under construction */
PObj *lastRef; /* Last object references by name */
PList *list; /* Object list under construction */
PMacro *pMacros; /* List of all defined macros */
PVar *pVar; /* Application-defined variables */
PBox bbox; /* Bounding box around all statements */
/* Cache of layout values. <=0.0 for unknown... */
PNum rScale; /* Multiply to convert inches to pixels */
PNum fontScale; /* Scale fonts by this percent */
PNum charWidth; /* Character width */
PNum charHeight; /* Character height */
PNum wArrow; /* Width of arrowhead at the fat end */
PNum hArrow; /* Ht of arrowhead - dist from tip to fat end */
char bLayoutVars; /* True if cache is valid */
char thenFlag; /* True if "then" seen */
char samePath; /* aTPath copied by "same" */
const char *zClass; /* Class name for the <svg> */
int wSVG, hSVG; /* Width and height of the <svg> */
int fgcolor; /* foreground color value, or -1 for none */
int bgcolor; /* background color value, or -1 for none */
/* Paths for lines are constructed here first, then transferred into
** the PObj object at the end: */
int nTPath; /* Number of entries on aTPath[] */
int mTPath; /* For last entry, 1: x set, 2: y set */
PPoint aTPath[1000]; /* Path under construction */
/* Error contexts */
unsigned int nCtx; /* Number of error contexts */
PToken aCtx[10]; /* Nested error contexts */
};
/* Include PIKCHR_PLAINTEXT_ERRORS among the bits of mFlags on the 3rd
** argument to pikchr() in order to cause error message text to come out
** as text/plain instead of as text/html
*/
#define PIKCHR_PLAINTEXT_ERRORS 0x0001
/* Include PIKCHR_DARK_MODE among the mFlag bits to invert colors.
*/
#define PIKCHR_DARK_MODE 0x0002
/*
** The behavior of an object class is defined by an instance of
** this structure. This is the "virtual method" table.
*/
struct PClass {
const char *zName; /* Name of class */
char isLine; /* True if a line class */
char eJust; /* Use box-style text justification */
void (*xInit)(Pik*,PObj*); /* Initializer */
void (*xNumProp)(Pik*,PObj*,PToken*); /* Value change notification */
void (*xCheck)(Pik*,PObj*); /* Checks to do after parsing */
PPoint (*xChop)(Pik*,PObj*,PPoint*); /* Chopper */
PPoint (*xOffset)(Pik*,PObj*,int); /* Offset from .c to edge point */
void (*xFit)(Pik*,PObj*,PNum w,PNum h); /* Size to fit text */
void (*xRender)(Pik*,PObj*); /* Render */
};
/* Forward declarations */
static void pik_append(Pik*, const char*,int);
static void pik_append_text(Pik*,const char*,int,int);
static void pik_append_num(Pik*,const char*,PNum);
static void pik_append_point(Pik*,const char*,PPoint*);
static void pik_append_x(Pik*,const char*,PNum,const char*);
static void pik_append_y(Pik*,const char*,PNum,const char*);
static void pik_append_xy(Pik*,const char*,PNum,PNum);
static void pik_append_dis(Pik*,const char*,PNum,const char*);
static void pik_append_arc(Pik*,PNum,PNum,PNum,PNum);
static void pik_append_clr(Pik*,const char*,PNum,const char*,int);
static void pik_append_style(Pik*,PObj*,int);
static void pik_append_txt(Pik*,PObj*, PBox*);
static void pik_draw_arrowhead(Pik*,PPoint*pFrom,PPoint*pTo,PObj*);
static void pik_chop(PPoint*pFrom,PPoint*pTo,PNum);
static void pik_error(Pik*,PToken*,const char*);
static void pik_elist_free(Pik*,PList*);
static void pik_elem_free(Pik*,PObj*);
static void pik_render(Pik*,PList*);
static PList *pik_elist_append(Pik*,PList*,PObj*);
static PObj *pik_elem_new(Pik*,PToken*,PToken*,PList*);
static void pik_set_direction(Pik*,int);
static void pik_elem_setname(Pik*,PObj*,PToken*);
static int pik_round(PNum);
static void pik_set_var(Pik*,PToken*,PNum,PToken*);
static PNum pik_value(Pik*,const char*,int,int*);
static int pik_value_int(Pik*,const char*,int,int*);
static PNum pik_lookup_color(Pik*,PToken*);
static PNum pik_get_var(Pik*,PToken*);
static PNum pik_atof(PToken*);
static void pik_after_adding_attributes(Pik*,PObj*);
static void pik_elem_move(PObj*,PNum dx, PNum dy);
static void pik_elist_move(PList*,PNum dx, PNum dy);
static void pik_set_numprop(Pik*,PToken*,PRel*);
static void pik_set_clrprop(Pik*,PToken*,PNum);
static void pik_set_dashed(Pik*,PToken*,PNum*);
static void pik_then(Pik*,PToken*,PObj*);
static void pik_add_direction(Pik*,PToken*,PRel*);
static void pik_move_hdg(Pik*,PRel*,PToken*,PNum,PToken*,PToken*);
static void pik_evenwith(Pik*,PToken*,PPoint*);
static void pik_set_from(Pik*,PObj*,PToken*,PPoint*);
static void pik_add_to(Pik*,PObj*,PToken*,PPoint*);
static void pik_close_path(Pik*,PToken*);
static void pik_set_at(Pik*,PToken*,PPoint*,PToken*);
static short int pik_nth_value(Pik*,PToken*);
static PObj *pik_find_nth(Pik*,PObj*,PToken*);
static PObj *pik_find_byname(Pik*,PObj*,PToken*);
static PPoint pik_place_of_elem(Pik*,PObj*,PToken*);
static int pik_bbox_isempty(PBox*);
static int pik_bbox_contains_point(PBox*,PPoint*);
static void pik_bbox_init(PBox*);
static void pik_bbox_addbox(PBox*,PBox*);
static void pik_bbox_add_xy(PBox*,PNum,PNum);
static void pik_bbox_addellipse(PBox*,PNum x,PNum y,PNum rx,PNum ry);
static void pik_add_txt(Pik*,PToken*,int);
static int pik_text_length(const PToken *pToken, const int isMonospace);
static void pik_size_to_fit(Pik*,PToken*,int);
static int pik_text_position(int,PToken*);
static PNum pik_property_of(PObj*,PToken*);
static PNum pik_func(Pik*,PToken*,PNum,PNum);
static PPoint pik_position_between(PNum x, PPoint p1, PPoint p2);
static PPoint pik_position_at_angle(PNum dist, PNum r, PPoint pt);
static PPoint pik_position_at_hdg(PNum dist, PToken *pD, PPoint pt);
static void pik_same(Pik *p, PObj*, PToken*);
static PPoint pik_nth_vertex(Pik *p, PToken *pNth, PToken *pErr, PObj *pObj);
static PToken pik_next_semantic_token(PToken *pThis);
static void pik_compute_layout_settings(Pik*);
static void pik_behind(Pik*,PObj*);
static PObj *pik_assert(Pik*,PNum,PToken*,PNum);
static PObj *pik_position_assert(Pik*,PPoint*,PToken*,PPoint*);
static PNum pik_dist(PPoint*,PPoint*);
static void pik_add_macro(Pik*,PToken *pId,PToken *pCode);
} // end %include
%name pik_parser
%token_prefix T_
%token_type {PToken}
%extra_context {Pik *p}
%fallback ID EDGEPT.
// precedence rules.
%left OF.
%left PLUS MINUS.
%left STAR SLASH PERCENT.
%right UMINUS.
%type statement_list {PList*}
%destructor statement_list {pik_elist_free(p,$$);}
%type statement {PObj*}
%destructor statement {pik_elem_free(p,$$);}
%type unnamed_statement {PObj*}
%destructor unnamed_statement {pik_elem_free(p,$$);}
%type basetype {PObj*}
%destructor basetype {pik_elem_free(p,$$);}
%type expr {PNum}
%type numproperty {PToken}
%type edge {PToken}
%type direction {PToken}
%type dashproperty {PToken}
%type colorproperty {PToken}
%type locproperty {PToken}
%type position {PPoint}
%type place {PPoint}
%type object {PObj*}
%type objectname {PObj*}
%type nth {PToken}
%type textposition {short int}
%type rvalue {PNum}
%type lvalue {PToken}
%type even {PToken}
%type relexpr {PRel}
%type optrelexpr {PRel}
%syntax_error {
if( TOKEN.z && TOKEN.z[0] ){
pik_error(p, &TOKEN, "syntax error");
}else{
pik_error(p, 0, "syntax error");
}
UNUSED_PARAMETER(yymajor);
}
%stack_overflow {
pik_error(p, 0, "parser stack overflow");
}
document ::= statement_list(X). {pik_render(p,X);}
statement_list(A) ::= statement(X). { A = pik_elist_append(p,0,X); }
statement_list(A) ::= statement_list(B) EOL statement(X).
{ A = pik_elist_append(p,B,X); }
statement(A) ::= . { A = 0; }
statement(A) ::= direction(D). { pik_set_direction(p,D.eCode); A=0; }
statement(A) ::= lvalue(N) ASSIGN(OP) rvalue(X). {pik_set_var(p,&N,X,&OP); A=0;}
statement(A) ::= PLACENAME(N) COLON unnamed_statement(X).
{ A = X; pik_elem_setname(p,X,&N); }
statement(A) ::= PLACENAME(N) COLON position(P).
{ A = pik_elem_new(p,0,0,0);
if(A){ A->ptAt = P; pik_elem_setname(p,A,&N); }}
statement(A) ::= unnamed_statement(X). {A = X;}
statement(A) ::= print prlist. {pik_append(p,"<br>\n",5); A=0;}
// assert() statements are undocumented and are intended for testing and
// debugging use only. If the equality comparison of the assert() fails
// then an error message is generated.
statement(A) ::= ASSERT LP expr(X) EQ(OP) expr(Y) RP. {A=pik_assert(p,X,&OP,Y);}
statement(A) ::= ASSERT LP position(X) EQ(OP) position(Y) RP.
{A=pik_position_assert(p,&X,&OP,&Y);}
statement(A) ::= DEFINE ID(ID) CODEBLOCK(C). {A=0; pik_add_macro(p,&ID,&C);}
lvalue(A) ::= ID(A).
lvalue(A) ::= FILL(A).
lvalue(A) ::= COLOR(A).
lvalue(A) ::= THICKNESS(A).
// PLACENAME might actually be a color name (ex: DarkBlue). But we
// cannot make it part of expr due to parsing ambiguities. The
// rvalue non-terminal means "general expression or a colorname"
rvalue(A) ::= expr(A).
rvalue(A) ::= PLACENAME(C). {A = pik_lookup_color(p,&C);}
print ::= PRINT.
prlist ::= pritem.
prlist ::= prlist prsep pritem.
pritem ::= FILL(X). {pik_append_num(p,"",pik_value(p,X.z,X.n,0));}
pritem ::= COLOR(X). {pik_append_num(p,"",pik_value(p,X.z,X.n,0));}
pritem ::= THICKNESS(X). {pik_append_num(p,"",pik_value(p,X.z,X.n,0));}
pritem ::= rvalue(X). {pik_append_num(p,"",X);}
pritem ::= STRING(S). {pik_append_text(p,S.z+1,S.n-2,0);}
prsep ::= COMMA. {pik_append(p, " ", 1);}
unnamed_statement(A) ::= basetype(X) attribute_list.
{A = X; pik_after_adding_attributes(p,A);}
basetype(A) ::= CLASSNAME(N). {A = pik_elem_new(p,&N,0,0); }
basetype(A) ::= STRING(N) textposition(P).
{N.eCode = P; A = pik_elem_new(p,0,&N,0); }
basetype(A) ::= LB savelist(L) statement_list(X) RB(E).
{ p->list = L; A = pik_elem_new(p,0,0,X); if(A) A->errTok = E; }
%type savelist {PList*}
// No destructor required as this same PList is also held by
// an "statement" non-terminal deeper on the stack.
savelist(A) ::= . {A = p->list; p->list = 0;}
direction(A) ::= UP(A).
direction(A) ::= DOWN(A).
direction(A) ::= LEFT(A).
direction(A) ::= RIGHT(A).
relexpr(A) ::= expr(B). {A.rAbs = B; A.rRel = 0;}
relexpr(A) ::= expr(B) PERCENT. {A.rAbs = 0; A.rRel = B/100;}
optrelexpr(A) ::= relexpr(A).
optrelexpr(A) ::= . {A.rAbs = 0; A.rRel = 1.0;}
attribute_list ::= relexpr(X) alist. {pik_add_direction(p,0,&X);}
attribute_list ::= alist.
alist ::=.
alist ::= alist attribute.
attribute ::= numproperty(P) relexpr(X). { pik_set_numprop(p,&P,&X); }
attribute ::= dashproperty(P) expr(X). { pik_set_dashed(p,&P,&X); }
attribute ::= dashproperty(P). { pik_set_dashed(p,&P,0); }
attribute ::= colorproperty(P) rvalue(X). { pik_set_clrprop(p,&P,X); }
attribute ::= go direction(D) optrelexpr(X). { pik_add_direction(p,&D,&X);}
attribute ::= go direction(D) even position(P). {pik_evenwith(p,&D,&P);}
attribute ::= CLOSE(E). { pik_close_path(p,&E); }
attribute ::= CHOP. { p->cur->bChop = 1; }
attribute ::= FROM(T) position(X). { pik_set_from(p,p->cur,&T,&X); }
attribute ::= TO(T) position(X). { pik_add_to(p,p->cur,&T,&X); }
attribute ::= THEN(T). { pik_then(p, &T, p->cur); }
attribute ::= THEN(E) optrelexpr(D) HEADING(H) expr(A).
{pik_move_hdg(p,&D,&H,A,0,&E);}
attribute ::= THEN(E) optrelexpr(D) EDGEPT(C). {pik_move_hdg(p,&D,0,0,&C,&E);}
attribute ::= GO(E) optrelexpr(D) HEADING(H) expr(A).
{pik_move_hdg(p,&D,&H,A,0,&E);}
attribute ::= GO(E) optrelexpr(D) EDGEPT(C). {pik_move_hdg(p,&D,0,0,&C,&E);}
attribute ::= boolproperty.
attribute ::= AT(A) position(P). { pik_set_at(p,0,&P,&A); }
attribute ::= WITH withclause.
attribute ::= SAME(E). {pik_same(p,0,&E);}
attribute ::= SAME(E) AS object(X). {pik_same(p,X,&E);}
attribute ::= STRING(T) textposition(P). {pik_add_txt(p,&T,P);}
attribute ::= FIT(E). {pik_size_to_fit(p,&E,3); }
attribute ::= BEHIND object(X). {pik_behind(p,X);}
go ::= GO.
go ::= .
even ::= UNTIL EVEN WITH.
even ::= EVEN WITH.
withclause ::= DOT_E edge(E) AT(A) position(P).{ pik_set_at(p,&E,&P,&A); }
withclause ::= edge(E) AT(A) position(P). { pik_set_at(p,&E,&P,&A); }
// Properties that require an argument
numproperty(A) ::= HEIGHT|WIDTH|RADIUS|DIAMETER|THICKNESS(P). {A = P;}
// Properties with optional arguments
dashproperty(A) ::= DOTTED(A).
dashproperty(A) ::= DASHED(A).
// Color properties
colorproperty(A) ::= FILL(A).
colorproperty(A) ::= COLOR(A).
// Properties with no argument
boolproperty ::= CW. {p->cur->cw = 1;}
boolproperty ::= CCW. {p->cur->cw = 0;}
boolproperty ::= LARROW. {p->cur->larrow=1; p->cur->rarrow=0; }
boolproperty ::= RARROW. {p->cur->larrow=0; p->cur->rarrow=1; }
boolproperty ::= LRARROW. {p->cur->larrow=1; p->cur->rarrow=1; }
boolproperty ::= INVIS. {p->cur->sw = -0.00001;}
boolproperty ::= THICK. {p->cur->sw *= 1.5;}
boolproperty ::= THIN. {p->cur->sw *= 0.67;}
boolproperty ::= SOLID. {p->cur->sw = pik_value(p,"thickness",9,0);
p->cur->dotted = p->cur->dashed = 0.0;}
textposition(A) ::= . {A = 0;}
textposition(A) ::= textposition(B)
CENTER|LJUST|RJUST|ABOVE|BELOW|ITALIC|BOLD|MONO|ALIGNED|BIG|SMALL(F).
{A = (short int)pik_text_position(B,&F);}
position(A) ::= expr(X) COMMA expr(Y). {A.x=X; A.y=Y;}
position(A) ::= place(A).
position(A) ::= place(B) PLUS expr(X) COMMA expr(Y). {A.x=B.x+X; A.y=B.y+Y;}
position(A) ::= place(B) MINUS expr(X) COMMA expr(Y). {A.x=B.x-X; A.y=B.y-Y;}
position(A) ::= place(B) PLUS LP expr(X) COMMA expr(Y) RP.
{A.x=B.x+X; A.y=B.y+Y;}
position(A) ::= place(B) MINUS LP expr(X) COMMA expr(Y) RP.
{A.x=B.x-X; A.y=B.y-Y;}
position(A) ::= LP position(X) COMMA position(Y) RP. {A.x=X.x; A.y=Y.y;}
position(A) ::= LP position(X) RP. {A=X;}
position(A) ::= expr(X) between position(P1) AND position(P2).
{A = pik_position_between(X,P1,P2);}
position(A) ::= expr(X) LT position(P1) COMMA position(P2) GT.
{A = pik_position_between(X,P1,P2);}
position(A) ::= expr(X) ABOVE position(B). {A=B; A.y += X;}
position(A) ::= expr(X) BELOW position(B). {A=B; A.y -= X;}
position(A) ::= expr(X) LEFT OF position(B). {A=B; A.x -= X;}
position(A) ::= expr(X) RIGHT OF position(B). {A=B; A.x += X;}
position(A) ::= expr(D) ON HEADING EDGEPT(E) OF position(P).
{A = pik_position_at_hdg(D,&E,P);}
position(A) ::= expr(D) HEADING EDGEPT(E) OF position(P).
{A = pik_position_at_hdg(D,&E,P);}
position(A) ::= expr(D) EDGEPT(E) OF position(P).
{A = pik_position_at_hdg(D,&E,P);}
position(A) ::= expr(D) ON HEADING expr(G) FROM position(P).
{A = pik_position_at_angle(D,G,P);}
position(A) ::= expr(D) HEADING expr(G) FROM position(P).
{A = pik_position_at_angle(D,G,P);}
between ::= WAY BETWEEN.
between ::= BETWEEN.
between ::= OF THE WAY BETWEEN.
// place2 is the same as place, but excludes the forms like
// "RIGHT of object" to avoid a parsing ambiguity with "place .x"
// and "place .y" expressions
%type place2 {PPoint}
place(A) ::= place2(A).
place(A) ::= edge(X) OF object(O). {A = pik_place_of_elem(p,O,&X);}
place2(A) ::= object(O). {A = pik_place_of_elem(p,O,0);}
place2(A) ::= object(O) DOT_E edge(X). {A = pik_place_of_elem(p,O,&X);}
place2(A) ::= NTH(N) VERTEX(E) OF object(X). {A = pik_nth_vertex(p,&N,&E,X);}
edge(A) ::= CENTER(A).
edge(A) ::= EDGEPT(A).
edge(A) ::= TOP(A).
edge(A) ::= BOTTOM(A).
edge(A) ::= START(A).
edge(A) ::= END(A).
edge(A) ::= RIGHT(A).
edge(A) ::= LEFT(A).
object(A) ::= objectname(A).
object(A) ::= nth(N). {A = pik_find_nth(p,0,&N);}
object(A) ::= nth(N) OF|IN object(B). {A = pik_find_nth(p,B,&N);}
objectname(A) ::= THIS. {A = p->cur;}
objectname(A) ::= PLACENAME(N). {A = pik_find_byname(p,0,&N);}
objectname(A) ::= objectname(B) DOT_U PLACENAME(N).
{A = pik_find_byname(p,B,&N);}
nth(A) ::= NTH(N) CLASSNAME(ID). {A=ID; A.eCode = pik_nth_value(p,&N); }
nth(A) ::= NTH(N) LAST CLASSNAME(ID). {A=ID; A.eCode = -pik_nth_value(p,&N); }
nth(A) ::= LAST CLASSNAME(ID). {A=ID; A.eCode = -1;}
nth(A) ::= LAST(ID). {A=ID; A.eCode = -1;}
nth(A) ::= NTH(N) LB(ID) RB. {A=ID; A.eCode = pik_nth_value(p,&N);}
nth(A) ::= NTH(N) LAST LB(ID) RB. {A=ID; A.eCode = -pik_nth_value(p,&N);}
nth(A) ::= LAST LB(ID) RB. {A=ID; A.eCode = -1; }
expr(A) ::= expr(X) PLUS expr(Y). {A=X+Y;}
expr(A) ::= expr(X) MINUS expr(Y). {A=X-Y;}
expr(A) ::= expr(X) STAR expr(Y). {A=X*Y;}
expr(A) ::= expr(X) SLASH(E) expr(Y). {
if( Y==0.0 ){ pik_error(p, &E, "division by zero"); A = 0.0; }
else{ A = X/Y; }
}
expr(A) ::= MINUS expr(X). [UMINUS] {A=-X;}
expr(A) ::= PLUS expr(X). [UMINUS] {A=X;}
expr(A) ::= LP expr(X) RP. {A=X;}
expr(A) ::= LP FILL|COLOR|THICKNESS(X) RP. {A=pik_get_var(p,&X);}
expr(A) ::= NUMBER(N). {A=pik_atof(&N);}
expr(A) ::= ID(N). {A=pik_get_var(p,&N);}
expr(A) ::= FUNC1(F) LP expr(X) RP. {A = pik_func(p,&F,X,0.0);}
expr(A) ::= FUNC2(F) LP expr(X) COMMA expr(Y) RP. {A = pik_func(p,&F,X,Y);}
expr(A) ::= DIST LP position(X) COMMA position(Y) RP. {A = pik_dist(&X,&Y);}
expr(A) ::= place2(B) DOT_XY X. {A = B.x;}
expr(A) ::= place2(B) DOT_XY Y. {A = B.y;}
expr(A) ::= object(B) DOT_L numproperty(P). {A=pik_property_of(B,&P);}
expr(A) ::= object(B) DOT_L dashproperty(P). {A=pik_property_of(B,&P);}
expr(A) ::= object(B) DOT_L colorproperty(P). {A=pik_property_of(B,&P);}
%code {
/* Chart of the 148 official CSS color names with their
** corresponding RGB values thru Color Module Level 4:
** https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
**
** Two new names "None" and "Off" are added with a value
** of -1.
*/
static const struct {
const char *zName; /* Name of the color */
int val; /* RGB value */
} aColor[] = {
{ "AliceBlue", 0xf0f8ff },
{ "AntiqueWhite", 0xfaebd7 },
{ "Aqua", 0x00ffff },
{ "Aquamarine", 0x7fffd4 },
{ "Azure", 0xf0ffff },
{ "Beige", 0xf5f5dc },
{ "Bisque", 0xffe4c4 },
{ "Black", 0x000000 },
{ "BlanchedAlmond", 0xffebcd },
{ "Blue", 0x0000ff },
{ "BlueViolet", 0x8a2be2 },
{ "Brown", 0xa52a2a },
{ "BurlyWood", 0xdeb887 },
{ "CadetBlue", 0x5f9ea0 },
{ "Chartreuse", 0x7fff00 },
{ "Chocolate", 0xd2691e },
{ "Coral", 0xff7f50 },
{ "CornflowerBlue", 0x6495ed },
{ "Cornsilk", 0xfff8dc },
{ "Crimson", 0xdc143c },
{ "Cyan", 0x00ffff },
{ "DarkBlue", 0x00008b },
{ "DarkCyan", 0x008b8b },
{ "DarkGoldenrod", 0xb8860b },
{ "DarkGray", 0xa9a9a9 },
{ "DarkGreen", 0x006400 },
{ "DarkGrey", 0xa9a9a9 },
{ "DarkKhaki", 0xbdb76b },
{ "DarkMagenta", 0x8b008b },
{ "DarkOliveGreen", 0x556b2f },
{ "DarkOrange", 0xff8c00 },
{ "DarkOrchid", 0x9932cc },
{ "DarkRed", 0x8b0000 },
{ "DarkSalmon", 0xe9967a },
{ "DarkSeaGreen", 0x8fbc8f },
{ "DarkSlateBlue", 0x483d8b },
{ "DarkSlateGray", 0x2f4f4f },
{ "DarkSlateGrey", 0x2f4f4f },
{ "DarkTurquoise", 0x00ced1 },
{ "DarkViolet", 0x9400d3 },
{ "DeepPink", 0xff1493 },
{ "DeepSkyBlue", 0x00bfff },
{ "DimGray", 0x696969 },
{ "DimGrey", 0x696969 },
{ "DodgerBlue", 0x1e90ff },
{ "Firebrick", 0xb22222 },
{ "FloralWhite", 0xfffaf0 },
{ "ForestGreen", 0x228b22 },
{ "Fuchsia", 0xff00ff },
{ "Gainsboro", 0xdcdcdc },
{ "GhostWhite", 0xf8f8ff },
{ "Gold", 0xffd700 },
{ "Goldenrod", 0xdaa520 },
{ "Gray", 0x808080 },
{ "Green", 0x008000 },
{ "GreenYellow", 0xadff2f },
{ "Grey", 0x808080 },
{ "Honeydew", 0xf0fff0 },
{ "HotPink", 0xff69b4 },
{ "IndianRed", 0xcd5c5c },
{ "Indigo", 0x4b0082 },
{ "Ivory", 0xfffff0 },
{ "Khaki", 0xf0e68c },
{ "Lavender", 0xe6e6fa },
{ "LavenderBlush", 0xfff0f5 },
{ "LawnGreen", 0x7cfc00 },
{ "LemonChiffon", 0xfffacd },
{ "LightBlue", 0xadd8e6 },
{ "LightCoral", 0xf08080 },
{ "LightCyan", 0xe0ffff },
{ "LightGoldenrodYellow", 0xfafad2 },
{ "LightGray", 0xd3d3d3 },
{ "LightGreen", 0x90ee90 },
{ "LightGrey", 0xd3d3d3 },
{ "LightPink", 0xffb6c1 },
{ "LightSalmon", 0xffa07a },
{ "LightSeaGreen", 0x20b2aa },
{ "LightSkyBlue", 0x87cefa },
{ "LightSlateGray", 0x778899 },
{ "LightSlateGrey", 0x778899 },
{ "LightSteelBlue", 0xb0c4de },
{ "LightYellow", 0xffffe0 },
{ "Lime", 0x00ff00 },
{ "LimeGreen", 0x32cd32 },
{ "Linen", 0xfaf0e6 },
{ "Magenta", 0xff00ff },
{ "Maroon", 0x800000 },
{ "MediumAquamarine", 0x66cdaa },
{ "MediumBlue", 0x0000cd },
{ "MediumOrchid", 0xba55d3 },
{ "MediumPurple", 0x9370db },
{ "MediumSeaGreen", 0x3cb371 },
{ "MediumSlateBlue", 0x7b68ee },
{ "MediumSpringGreen", 0x00fa9a },
{ "MediumTurquoise", 0x48d1cc },
{ "MediumVioletRed", 0xc71585 },
{ "MidnightBlue", 0x191970 },
{ "MintCream", 0xf5fffa },
{ "MistyRose", 0xffe4e1 },
{ "Moccasin", 0xffe4b5 },
{ "NavajoWhite", 0xffdead },
{ "Navy", 0x000080 },
{ "None", -1 }, /* Non-standard addition */
{ "Off", -1 }, /* Non-standard addition */
{ "OldLace", 0xfdf5e6 },
{ "Olive", 0x808000 },
{ "OliveDrab", 0x6b8e23 },
{ "Orange", 0xffa500 },
{ "OrangeRed", 0xff4500 },
{ "Orchid", 0xda70d6 },
{ "PaleGoldenrod", 0xeee8aa },
{ "PaleGreen", 0x98fb98 },
{ "PaleTurquoise", 0xafeeee },
{ "PaleVioletRed", 0xdb7093 },
{ "PapayaWhip", 0xffefd5 },
{ "PeachPuff", 0xffdab9 },
{ "Peru", 0xcd853f },
{ "Pink", 0xffc0cb },
{ "Plum", 0xdda0dd },
{ "PowderBlue", 0xb0e0e6 },
{ "Purple", 0x800080 },
{ "RebeccaPurple", 0x663399 },
{ "Red", 0xff0000 },
{ "RosyBrown", 0xbc8f8f },
{ "RoyalBlue", 0x4169e1 },
{ "SaddleBrown", 0x8b4513 },
{ "Salmon", 0xfa8072 },
{ "SandyBrown", 0xf4a460 },
{ "SeaGreen", 0x2e8b57 },
{ "Seashell", 0xfff5ee },
{ "Sienna", 0xa0522d },
{ "Silver", 0xc0c0c0 },
{ "SkyBlue", 0x87ceeb },
{ "SlateBlue", 0x6a5acd },
{ "SlateGray", 0x708090 },
{ "SlateGrey", 0x708090 },
{ "Snow", 0xfffafa },
{ "SpringGreen", 0x00ff7f },
{ "SteelBlue", 0x4682b4 },
{ "Tan", 0xd2b48c },
{ "Teal", 0x008080 },
{ "Thistle", 0xd8bfd8 },
{ "Tomato", 0xff6347 },
{ "Turquoise", 0x40e0d0 },
{ "Violet", 0xee82ee },
{ "Wheat", 0xf5deb3 },
{ "White", 0xffffff },
{ "WhiteSmoke", 0xf5f5f5 },
{ "Yellow", 0xffff00 },
{ "YellowGreen", 0x9acd32 },
};
/* Built-in variable names.
**
** This array is constant. When a script changes the value of one of
** these built-ins, a new PVar record is added at the head of
** the Pik.pVar list, which is searched first. Thus the new PVar entry
** will override this default value.
**
** Units are in inches, except for "color" and "fill" which are
** interpreted as 24-bit RGB values.
**
** Binary search used. Must be kept in sorted order.
*/
static const struct { const char *zName; PNum val; } aBuiltin[] = {
{ "arcrad", 0.25 },
{ "arrowhead", 2.0 },
{ "arrowht", 0.08 },
{ "arrowwid", 0.06 },
{ "boxht", 0.5 },
{ "boxrad", 0.0 },
{ "boxwid", 0.75 },
{ "charht", 0.14 },
{ "charwid", 0.08 },
{ "circlerad", 0.25 },
{ "color", 0.0 },
{ "cylht", 0.5 },
{ "cylrad", 0.075 },
{ "cylwid", 0.75 },
{ "dashwid", 0.05 },
{ "diamondht", 0.75 },
{ "diamondwid", 1.0 },
{ "dotrad", 0.015 },
{ "ellipseht", 0.5 },
{ "ellipsewid", 0.75 },
{ "fileht", 0.75 },
{ "filerad", 0.15 },
{ "filewid", 0.5 },
{ "fill", -1.0 },
{ "lineht", 0.5 },
{ "linewid", 0.5 },
{ "movewid", 0.5 },
{ "ovalht", 0.5 },
{ "ovalwid", 1.0 },
{ "scale", 1.0 },
{ "textht", 0.5 },
{ "textwid", 0.75 },
{ "thickness", 0.015 },
};
/* Methods for the "arc" class */
static void arcInit(Pik *p, PObj *pObj){
pObj->w = pik_value(p, "arcrad",6,0);
pObj->h = pObj->w;
}
/* Hack: Arcs are here rendered as quadratic Bezier curves rather
** than true arcs. Multiple reasons: (1) the legacy-PIC parameters
** that control arcs are obscure and I could not figure out what they
** mean based on available documentation. (2) Arcs are rarely used,
** and so do not seem that important.
*/
static PPoint arcControlPoint(int cw, PPoint f, PPoint t, PNum rScale){
PPoint m;
PNum dx, dy;
m.x = 0.5*(f.x+t.x);
m.y = 0.5*(f.y+t.y);
dx = t.x - f.x;
dy = t.y - f.y;
if( cw ){
m.x -= 0.5*rScale*dy;
m.y += 0.5*rScale*dx;
}else{
m.x += 0.5*rScale*dy;
m.y -= 0.5*rScale*dx;
}
return m;
}
static void arcCheck(Pik *p, PObj *pObj){
PPoint m;
if( p->nTPath>2 ){
pik_error(p, &pObj->errTok, "arc geometry error");
return;
}
m = arcControlPoint(pObj->cw, p->aTPath[0], p->aTPath[1], 0.5);
pik_bbox_add_xy(&pObj->bbox, m.x, m.y);
}
static void arcRender(Pik *p, PObj *pObj){
PPoint f, m, t;
if( pObj->nPath<2 ) return;
if( pObj->sw<0.0 ) return;
f = pObj->aPath[0];
t = pObj->aPath[1];
m = arcControlPoint(pObj->cw,f,t,1.0);
if( pObj->larrow ){
pik_draw_arrowhead(p,&m,&f,pObj);
}
if( pObj->rarrow ){
pik_draw_arrowhead(p,&m,&t,pObj);
}
pik_append_xy(p,"<path d=\"M", f.x, f.y);
pik_append_xy(p,"Q", m.x, m.y);
pik_append_xy(p," ", t.x, t.y);
pik_append(p,"\" ",2);
pik_append_style(p,pObj,0);
pik_append(p,"\" />\n", -1);
pik_append_txt(p, pObj, 0);
}
/* Methods for the "arrow" class */
static void arrowInit(Pik *p, PObj *pObj){
pObj->w = pik_value(p, "linewid",7,0);
pObj->h = pik_value(p, "lineht",6,0);
pObj->rad = pik_value(p, "linerad",7,0);
pObj->rarrow = 1;
}
/* Methods for the "box" class */
static void boxInit(Pik *p, PObj *pObj){
pObj->w = pik_value(p, "boxwid",6,0);
pObj->h = pik_value(p, "boxht",5,0);
pObj->rad = pik_value(p, "boxrad",6,0);
}
/* Return offset from the center of the box to the compass point
** given by parameter cp */
static PPoint boxOffset(Pik *p, PObj *pObj, int cp){
PPoint pt = cZeroPoint;
PNum w2 = 0.5*pObj->w;
PNum h2 = 0.5*pObj->h;
PNum rad = pObj->rad;
PNum rx;
if( rad<=0.0 ){
rx = 0.0;
}else{
if( rad>w2 ) rad = w2;
if( rad>h2 ) rad = h2;
rx = 0.29289321881345252392*rad;
}
switch( cp ){
case CP_C: break;
case CP_N: pt.x = 0.0; pt.y = h2; break;
case CP_NE: pt.x = w2-rx; pt.y = h2-rx; break;
case CP_E: pt.x = w2; pt.y = 0.0; break;
case CP_SE: pt.x = w2-rx; pt.y = rx-h2; break;
case CP_S: pt.x = 0.0; pt.y = -h2; break;
case CP_SW: pt.x = rx-w2; pt.y = rx-h2; break;
case CP_W: pt.x = -w2; pt.y = 0.0; break;
case CP_NW: pt.x = rx-w2; pt.y = h2-rx; break;
default: assert(0);
}
UNUSED_PARAMETER(p);
return pt;
}
static PPoint boxChop(Pik *p, PObj *pObj, PPoint *pPt){
PNum dx, dy;
int cp = CP_C;
PPoint chop = pObj->ptAt;
if( pObj->w<=0.0 ) return chop;
if( pObj->h<=0.0 ) return chop;
dx = (pPt->x - pObj->ptAt.x)*pObj->h/pObj->w;
dy = (pPt->y - pObj->ptAt.y);
if( dx>0.0 ){
if( dy>=2.414*dx ){
cp = CP_N;
}else if( dy>=0.414*dx ){
cp = CP_NE;
}else if( dy>=-0.414*dx ){
cp = CP_E;
}else if( dy>-2.414*dx ){
cp = CP_SE;
}else{
cp = CP_S;
}
}else{
if( dy>=-2.414*dx ){
cp = CP_N;
}else if( dy>=-0.414*dx ){
cp = CP_NW;
}else if( dy>=0.414*dx ){
cp = CP_W;
}else if( dy>2.414*dx ){
cp = CP_SW;
}else{
cp = CP_S;
}
}
chop = pObj->type->xOffset(p,pObj,cp);
chop.x += pObj->ptAt.x;
chop.y += pObj->ptAt.y;
return chop;
}
static void boxFit(Pik *p, PObj *pObj, PNum w, PNum h){
if( w>0 ) pObj->w = w;
if( h>0 ) pObj->h = h;
UNUSED_PARAMETER(p);
}
static void boxRender(Pik *p, PObj *pObj){
PNum w2 = 0.5*pObj->w;
PNum h2 = 0.5*pObj->h;
PNum rad = pObj->rad;
PPoint pt = pObj->ptAt;
if( pObj->sw>=0.0 ){
if( rad<=0.0 ){
pik_append_xy(p,"<path d=\"M", pt.x-w2,pt.y-h2);
pik_append_xy(p,"L", pt.x+w2,pt.y-h2);
pik_append_xy(p,"L", pt.x+w2,pt.y+h2);
pik_append_xy(p,"L", pt.x-w2,pt.y+h2);
pik_append(p,"Z\" ",-1);
}else{
/*
** ---- - y3
** / \
** / \ _ y2
** | |
** | | _ y1
** \ /
** \ /
** ---- _ y0
**
** ' ' ' '
** x0 x1 x2 x3
*/
PNum x0,x1,x2,x3,y0,y1,y2,y3;
if( rad>w2 ) rad = w2;
if( rad>h2 ) rad = h2;
x0 = pt.x - w2;
x1 = x0 + rad;
x3 = pt.x + w2;
x2 = x3 - rad;
y0 = pt.y - h2;
y1 = y0 + rad;
y3 = pt.y + h2;
y2 = y3 - rad;
pik_append_xy(p,"<path d=\"M", x1, y0);
if( x2>x1 ) pik_append_xy(p, "L", x2, y0);
pik_append_arc(p, rad, rad, x3, y1);
if( y2>y1 ) pik_append_xy(p, "L", x3, y2);
pik_append_arc(p, rad, rad, x2, y3);
if( x2>x1 ) pik_append_xy(p, "L", x1, y3);
pik_append_arc(p, rad, rad, x0, y2);
if( y2>y1 ) pik_append_xy(p, "L", x0, y1);
pik_append_arc(p, rad, rad, x1, y0);
pik_append(p,"Z\" ",-1);
}
pik_append_style(p,pObj,3);
pik_append(p,"\" />\n", -1);
}
pik_append_txt(p, pObj, 0);
}
/* Methods for the "circle" class */
static void circleInit(Pik *p, PObj *pObj){
pObj->w = pik_value(p, "circlerad",9,0)*2;
pObj->h = pObj->w;
pObj->rad = 0.5*pObj->w;
}
static void circleNumProp(Pik *p, PObj *pObj, PToken *pId){
/* For a circle, the width must equal the height and both must
** be twice the radius. Enforce those constraints. */
switch( pId->eType ){
case T_DIAMETER:
case T_RADIUS:
pObj->w = pObj->h = 2.0*pObj->rad;
break;
case T_WIDTH:
pObj->h = pObj->w;
pObj->rad = 0.5*pObj->w;
break;
case T_HEIGHT:
pObj->w = pObj->h;
pObj->rad = 0.5*pObj->w;
break;
}
UNUSED_PARAMETER(p);
}
static PPoint circleChop(Pik *p, PObj *pObj, PPoint *pPt){
PPoint chop;
PNum dx = pPt->x - pObj->ptAt.x;
PNum dy = pPt->y - pObj->ptAt.y;
PNum dist = hypot(dx,dy);
if( dist<pObj->rad || dist<=0 ) return pObj->ptAt;
chop.x = pObj->ptAt.x + dx*pObj->rad/dist;
chop.y = pObj->ptAt.y + dy*pObj->rad/dist;
UNUSED_PARAMETER(p);
return chop;
}
static void circleFit(Pik *p, PObj *pObj, PNum w, PNum h){
PNum mx = 0.0;
if( w>0 ) mx = w;
if( h>mx ) mx = h;
if( w*h>0 && (w*w + h*h) > mx*mx ){
mx = hypot(w,h);
}
if( mx>0.0 ){
pObj->rad = 0.5*mx;
pObj->w = pObj->h = mx;
}
UNUSED_PARAMETER(p);
}
static void circleRender(Pik *p, PObj *pObj){
PNum r = pObj->rad;
PPoint pt = pObj->ptAt;
if( pObj->sw>=0.0 ){
pik_append_x(p,"<circle cx=\"", pt.x, "\"");
pik_append_y(p," cy=\"", pt.y, "\"");
pik_append_dis(p," r=\"", r, "\" ");
pik_append_style(p,pObj,3);
pik_append(p,"\" />\n", -1);
}
pik_append_txt(p, pObj, 0);
}
/* Methods for the "cylinder" class */
static void cylinderInit(Pik *p, PObj *pObj){
pObj->w = pik_value(p, "cylwid",6,0);
pObj->h = pik_value(p, "cylht",5,0);
pObj->rad = pik_value(p, "cylrad",6,0); /* Minor radius of ellipses */
}
static void cylinderFit(Pik *p, PObj *pObj, PNum w, PNum h){
if( w>0 ) pObj->w = w;
if( h>0 ) pObj->h = h + 0.25*pObj->rad + pObj->sw;
UNUSED_PARAMETER(p);
}
static void cylinderRender(Pik *p, PObj *pObj){
PNum w2 = 0.5*pObj->w;
PNum h2 = 0.5*pObj->h;
PNum rad = pObj->rad;
PPoint pt = pObj->ptAt;
if( pObj->sw>=0.0 ){
if( rad>h2 ){
rad = h2;
}else if( rad<0 ){
rad = 0;
}
pik_append_xy(p,"<path d=\"M", pt.x-w2,pt.y+h2-rad);
pik_append_xy(p,"L", pt.x-w2,pt.y-h2+rad);
pik_append_arc(p,w2,rad,pt.x+w2,pt.y-h2+rad);
pik_append_xy(p,"L", pt.x+w2,pt.y+h2-rad);
pik_append_arc(p,w2,rad,pt.x-w2,pt.y+h2-rad);
pik_append_arc(p,w2,rad,pt.x+w2,pt.y+h2-rad);
pik_append(p,"\" ",-1);
pik_append_style(p,pObj,3);
pik_append(p,"\" />\n", -1);
}
pik_append_txt(p, pObj, 0);
}
static PPoint cylinderOffset(Pik *p, PObj *pObj, int cp){
PPoint pt = cZeroPoint;
PNum w2 = pObj->w*0.5;
PNum h1 = pObj->h*0.5;
PNum h2 = h1 - pObj->rad;
switch( cp ){
case CP_C: break;
case CP_N: pt.x = 0.0; pt.y = h1; break;
case CP_NE: pt.x = w2; pt.y = h2; break;
case CP_E: pt.x = w2; pt.y = 0.0; break;
case CP_SE: pt.x = w2; pt.y = -h2; break;
case CP_S: pt.x = 0.0; pt.y = -h1; break;
case CP_SW: pt.x = -w2; pt.y = -h2; break;
case CP_W: pt.x = -w2; pt.y = 0.0; break;
case CP_NW: pt.x = -w2; pt.y = h2; break;
default: assert(0);
}
UNUSED_PARAMETER(p);
return pt;
}
/* Methods for the "dot" class */
static void dotInit(Pik *p, PObj *pObj){
pObj->rad = pik_value(p, "dotrad",6,0);
pObj->h = pObj->w = pObj->rad*6;
pObj->fill = pObj->color;
}
static void dotNumProp(Pik *p, PObj *pObj, PToken *pId){
switch( pId->eType ){
case T_COLOR:
pObj->fill = pObj->color;
break;
case T_FILL:
pObj->color = pObj->fill;
break;
}
UNUSED_PARAMETER(p);
}
static void dotCheck(Pik *p, PObj *pObj){
pObj->w = pObj->h = 0;
pik_bbox_addellipse(&pObj->bbox, pObj->ptAt.x, pObj->ptAt.y,
pObj->rad, pObj->rad);
UNUSED_PARAMETER(p);
}
static PPoint dotOffset(Pik *p, PObj *pObj, int cp){
UNUSED_PARAMETER(p);
UNUSED_PARAMETER(pObj);
UNUSED_PARAMETER(cp);
return cZeroPoint;
}
static void dotRender(Pik *p, PObj *pObj){
PNum r = pObj->rad;
PPoint pt = pObj->ptAt;
if( pObj->sw>=0.0 ){
pik_append_x(p,"<circle cx=\"", pt.x, "\"");
pik_append_y(p," cy=\"", pt.y, "\"");
pik_append_dis(p," r=\"", r, "\"");
pik_append_style(p,pObj,2);
pik_append(p,"\" />\n", -1);
}
pik_append_txt(p, pObj, 0);
}
/* Methods for the "diamond" class */
static void diamondInit(Pik *p, PObj *pObj){
pObj->w = pik_value(p, "diamondwid",10,0);
pObj->h = pik_value(p, "diamondht",9,0);
pObj->bAltAutoFit = 1;
}
/* Return offset from the center of the box to the compass point
** given by parameter cp */
static PPoint diamondOffset(Pik *p, PObj *pObj, int cp){
PPoint pt = cZeroPoint;
PNum w2 = 0.5*pObj->w;
PNum w4 = 0.25*pObj->w;
PNum h2 = 0.5*pObj->h;
PNum h4 = 0.25*pObj->h;
switch( cp ){
case CP_C: break;
case CP_N: pt.x = 0.0; pt.y = h2; break;
case CP_NE: pt.x = w4; pt.y = h4; break;
case CP_E: pt.x = w2; pt.y = 0.0; break;
case CP_SE: pt.x = w4; pt.y = -h4; break;
case CP_S: pt.x = 0.0; pt.y = -h2; break;
case CP_SW: pt.x = -w4; pt.y = -h4; break;
case CP_W: pt.x = -w2; pt.y = 0.0; break;
case CP_NW: pt.x = -w4; pt.y = h4; break;
default: assert(0);
}
UNUSED_PARAMETER(p);
return pt;
}
static void diamondFit(Pik *p, PObj *pObj, PNum w, PNum h){
if( pObj->w<=0 ) pObj->w = w*1.5;
if( pObj->h<=0 ) pObj->h = h*1.5;
if( pObj->w>0 && pObj->h>0 ){
PNum x = pObj->w*h/pObj->h + w;
PNum y = pObj->h*x/pObj->w;
pObj->w = x;
pObj->h = y;
}
UNUSED_PARAMETER(p);
}
static void diamondRender(Pik *p, PObj *pObj){
PNum w2 = 0.5*pObj->w;
PNum h2 = 0.5*pObj->h;
PPoint pt = pObj->ptAt;
if( pObj->sw>=0.0 ){
pik_append_xy(p,"<path d=\"M", pt.x-w2,pt.y);
pik_append_xy(p,"L", pt.x,pt.y-h2);
pik_append_xy(p,"L", pt.x+w2,pt.y);
pik_append_xy(p,"L", pt.x,pt.y+h2);
pik_append(p,"Z\" ",-1);
pik_append_style(p,pObj,3);
pik_append(p,"\" />\n", -1);
}
pik_append_txt(p, pObj, 0);
}
/* Methods for the "ellipse" class */
static void ellipseInit(Pik *p, PObj *pObj){
pObj->w = pik_value(p, "ellipsewid",10,0);
pObj->h = pik_value(p, "ellipseht",9,0);
}
static PPoint ellipseChop(Pik *p, PObj *pObj, PPoint *pPt){
PPoint chop;
PNum s, dq, dist;
PNum dx = pPt->x - pObj->ptAt.x;
PNum dy = pPt->y - pObj->ptAt.y;
if( pObj->w<=0.0 ) return pObj->ptAt;
if( pObj->h<=0.0 ) return pObj->ptAt;
s = pObj->h/pObj->w;
dq = dx*s;
dist = hypot(dq,dy);
if( dist<pObj->h ) return pObj->ptAt;
chop.x = pObj->ptAt.x + 0.5*dq*pObj->h/(dist*s);
chop.y = pObj->ptAt.y + 0.5*dy*pObj->h/dist;
UNUSED_PARAMETER(p);
return chop;
}
static PPoint ellipseOffset(Pik *p, PObj *pObj, int cp){
PPoint pt = cZeroPoint;
PNum w = pObj->w*0.5;
PNum w2 = w*0.70710678118654747608;
PNum h = pObj->h*0.5;
PNum h2 = h*0.70710678118654747608;
switch( cp ){
case CP_C: break;
case CP_N: pt.x = 0.0; pt.y = h; break;
case CP_NE: pt.x = w2; pt.y = h2; break;
case CP_E: pt.x = w; pt.y = 0.0; break;
case CP_SE: pt.x = w2; pt.y = -h2; break;
case CP_S: pt.x = 0.0; pt.y = -h; break;
case CP_SW: pt.x = -w2; pt.y = -h2; break;
case CP_W: pt.x = -w; pt.y = 0.0; break;
case CP_NW: pt.x = -w2; pt.y = h2; break;
default: assert(0);
}
UNUSED_PARAMETER(p);
return pt;
}
static void ellipseRender(Pik *p, PObj *pObj){
PNum w = pObj->w;
PNum h = pObj->h;
PPoint pt = pObj->ptAt;
if( pObj->sw>=0.0 ){
pik_append_x(p,"<ellipse cx=\"", pt.x, "\"");
pik_append_y(p," cy=\"", pt.y, "\"");
pik_append_dis(p," rx=\"", w/2.0, "\"");
pik_append_dis(p," ry=\"", h/2.0, "\" ");
pik_append_style(p,pObj,3);
pik_append(p,"\" />\n", -1);
}
pik_append_txt(p, pObj, 0);
}
/* Methods for the "file" object */
static void fileInit(Pik *p, PObj *pObj){
pObj->w = pik_value(p, "filewid",7,0);
pObj->h = pik_value(p, "fileht",6,0);
pObj->rad = pik_value(p, "filerad",7,0);
}
/* Return offset from the center of the file to the compass point
** given by parameter cp */
static PPoint fileOffset(Pik *p, PObj *pObj, int cp){
PPoint pt = cZeroPoint;
PNum w2 = 0.5*pObj->w;
PNum h2 = 0.5*pObj->h;
PNum rx = pObj->rad;
PNum mn = w2<h2 ? w2 : h2;
if( rx>mn ) rx = mn;
if( rx<mn*0.25 ) rx = mn*0.25;
pt.x = pt.y = 0.0;
rx *= 0.5;
switch( cp ){
case CP_C: break;
case CP_N: pt.x = 0.0; pt.y = h2; break;
case CP_NE: pt.x = w2-rx; pt.y = h2-rx; break;
case CP_E: pt.x = w2; pt.y = 0.0; break;
case CP_SE: pt.x = w2; pt.y = -h2; break;
case CP_S: pt.x = 0.0; pt.y = -h2; break;
case CP_SW: pt.x = -w2; pt.y = -h2; break;
case CP_W: pt.x = -w2; pt.y = 0.0; break;
case CP_NW: pt.x = -w2; pt.y = h2; break;
default: assert(0);
}
UNUSED_PARAMETER(p);
return pt;
}
static void fileFit(Pik *p, PObj *pObj, PNum w, PNum h){
if( w>0 ) pObj->w = w;
if( h>0 ) pObj->h = h + 2*pObj->rad;
UNUSED_PARAMETER(p);
}
static void fileRender(Pik *p, PObj *pObj){
PNum w2 = 0.5*pObj->w;
PNum h2 = 0.5*pObj->h;
PNum rad = pObj->rad;
PPoint pt = pObj->ptAt;
PNum mn = w2<h2 ? w2 : h2;
if( rad>mn ) rad = mn;
if( rad<mn*0.25 ) rad = mn*0.25;
if( pObj->sw>=0.0 ){
pik_append_xy(p,"<path d=\"M", pt.x-w2,pt.y-h2);
pik_append_xy(p,"L", pt.x+w2,pt.y-h2);
pik_append_xy(p,"L", pt.x+w2,pt.y+(h2-rad));
pik_append_xy(p,"L", pt.x+(w2-rad),pt.y+h2);
pik_append_xy(p,"L", pt.x-w2,pt.y+h2);
pik_append(p,"Z\" ",-1);
pik_append_style(p,pObj,1);
pik_append(p,"\" />\n",-1);
pik_append_xy(p,"<path d=\"M", pt.x+(w2-rad), pt.y+h2);
pik_append_xy(p,"L", pt.x+(w2-rad),pt.y+(h2-rad));
pik_append_xy(p,"L", pt.x+w2, pt.y+(h2-rad));
pik_append(p,"\" ",-1);
pik_append_style(p,pObj,0);
pik_append(p,"\" />\n",-1);
}
pik_append_txt(p, pObj, 0);
}
/* Methods for the "line" class */
static void lineInit(Pik *p, PObj *pObj){
pObj->w = pik_value(p, "linewid",7,0);
pObj->h = pik_value(p, "lineht",6,0);
pObj->rad = pik_value(p, "linerad",7,0);
}
static PPoint lineOffset(Pik *p, PObj *pObj, int cp){
#if 0
/* In legacy PIC, the .center of an unclosed line is half way between
** its .start and .end. */
if( cp==CP_C && !pObj->bClose ){
PPoint out;
out.x = 0.5*(pObj->ptEnter.x + pObj->ptExit.x) - pObj->ptAt.x;
out.y = 0.5*(pObj->ptEnter.x + pObj->ptExit.y) - pObj->ptAt.y;
return out;
}
#endif
return boxOffset(p,pObj,cp);
}
static void lineRender(Pik *p, PObj *pObj){
int i;
if( pObj->sw>0.0 ){
const char *z = "<path d=\"M";
int n = pObj->nPath;
if( pObj->larrow ){
pik_draw_arrowhead(p,&pObj->aPath[1],&pObj->aPath[0],pObj);
}
if( pObj->rarrow ){
pik_draw_arrowhead(p,&pObj->aPath[n-2],&pObj->aPath[n-1],pObj);
}
for(i=0; i<pObj->nPath; i++){
pik_append_xy(p,z,pObj->aPath[i].x,pObj->aPath[i].y);
z = "L";
}
if( pObj->bClose ){
pik_append(p,"Z",1);
}else{
pObj->fill = -1.0;
}
pik_append(p,"\" ",-1);
pik_append_style(p,pObj,pObj->bClose?3:0);
pik_append(p,"\" />\n", -1);
}
pik_append_txt(p, pObj, 0);
}
/* Methods for the "move" class */
static void moveInit(Pik *p, PObj *pObj){
pObj->w = pik_value(p, "movewid",7,0);
pObj->h = pObj->w;
pObj->fill = -1.0;
pObj->color = -1.0;
pObj->sw = -1.0;
}
static void moveRender(Pik *p, PObj *pObj){
/* No-op */
UNUSED_PARAMETER(p);
UNUSED_PARAMETER(pObj);
}
/* Methods for the "oval" class */
static void ovalInit(Pik *p, PObj *pObj){
pObj->h = pik_value(p, "ovalht",6,0);
pObj->w = pik_value(p, "ovalwid",7,0);
pObj->rad = 0.5*(pObj->h<pObj->w?pObj->h:pObj->w);
}
static void ovalNumProp(Pik *p, PObj *pObj, PToken *pId){
UNUSED_PARAMETER(p);
UNUSED_PARAMETER(pId);
/* Always adjust the radius to be half of the smaller of
** the width and height. */
pObj->rad = 0.5*(pObj->h<pObj->w?pObj->h:pObj->w);
}
static void ovalFit(Pik *p, PObj *pObj, PNum w, PNum h){
UNUSED_PARAMETER(p);
if( w>0 ) pObj->w = w;
if( h>0 ) pObj->h = h;
if( pObj->w<pObj->h ) pObj->w = pObj->h;
pObj->rad = 0.5*(pObj->h<pObj->w?pObj->h:pObj->w);
}
/* Methods for the "spline" class */
static void splineInit(Pik *p, PObj *pObj){
pObj->w = pik_value(p, "linewid",7,0);
pObj->h = pik_value(p, "lineht",6,0);
pObj->rad = 1000;
}
/* Return a point along the path from "f" to "t" that is r units
** prior to reaching "t", except if the path is less than 2*r total,
** return the midpoint.
*/
static PPoint radiusMidpoint(PPoint f, PPoint t, PNum r, int *pbMid){
PNum dx = t.x - f.x;
PNum dy = t.y - f.y;
PNum dist = hypot(dx,dy);
PPoint m;
if( dist<=0.0 ) return t;
dx /= dist;
dy /= dist;
if( r > 0.5*dist ){
r = 0.5*dist;
*pbMid = 1;
}else{
*pbMid = 0;
}
m.x = t.x - r*dx;
m.y = t.y - r*dy;
return m;
}
static void radiusPath(Pik *p, PObj *pObj, PNum r){
int i;
int n = pObj->nPath;
const PPoint *a = pObj->aPath;
PPoint m;
PPoint an = a[n-1];
int isMid = 0;
int iLast = pObj->bClose ? n : n-1;
pik_append_xy(p,"<path d=\"M", a[0].x, a[0].y);
m = radiusMidpoint(a[0], a[1], r, &isMid);
pik_append_xy(p," L ",m.x,m.y);
for(i=1; i<iLast; i++){
an = i<n-1 ? a[i+1] : a[0];
m = radiusMidpoint(an,a[i],r, &isMid);
pik_append_xy(p," Q ",a[i].x,a[i].y);
pik_append_xy(p," ",m.x,m.y);
if( !isMid ){
m = radiusMidpoint(a[i],an,r, &isMid);
pik_append_xy(p," L ",m.x,m.y);
}
}
pik_append_xy(p," L ",an.x,an.y);
if( pObj->bClose ){
pik_append(p,"Z",1);
}else{
pObj->fill = -1.0;
}
pik_append(p,"\" ",-1);
pik_append_style(p,pObj,pObj->bClose?3:0);
pik_append(p,"\" />\n", -1);
}
static void splineRender(Pik *p, PObj *pObj){
if( pObj->sw>0.0 ){
int n = pObj->nPath;
PNum r = pObj->rad;
if( n<3 || r<=0.0 ){
lineRender(p,pObj);
return;
}
if( pObj->larrow ){
pik_draw_arrowhead(p,&pObj->aPath[1],&pObj->aPath[0],pObj);
}
if( pObj->rarrow ){
pik_draw_arrowhead(p,&pObj->aPath[n-2],&pObj->aPath[n-1],pObj);
}
radiusPath(p,pObj,pObj->rad);
}
pik_append_txt(p, pObj, 0);
}
/* Methods for the "text" class */
static void textInit(Pik *p, PObj *pObj){
pik_value(p, "textwid",7,0);
pik_value(p, "textht",6,0);
pObj->sw = 0.0;
}
static PPoint textOffset(Pik *p, PObj *pObj, int cp){
/* Automatically slim-down the width and height of text
** statements so that the bounding box tightly encloses the text,
** then get boxOffset() to do the offset computation.
*/
pik_size_to_fit(p, &pObj->errTok,3);
return boxOffset(p, pObj, cp);
}
static void textRender(Pik *p, PObj *pObj){
pik_append_txt(p, pObj, 0);
}
/* Methods for the "sublist" class */
static void sublistInit(Pik *p, PObj *pObj){
PList *pList = pObj->pSublist;
int i;
UNUSED_PARAMETER(p);
pik_bbox_init(&pObj->bbox);
for(i=0; i<pList->n; i++){
pik_bbox_addbox(&pObj->bbox, &pList->a[i]->bbox);
}
pObj->w = pObj->bbox.ne.x - pObj->bbox.sw.x;
pObj->h = pObj->bbox.ne.y - pObj->bbox.sw.y;
pObj->ptAt.x = 0.5*(pObj->bbox.ne.x + pObj->bbox.sw.x);
pObj->ptAt.y = 0.5*(pObj->bbox.ne.y + pObj->bbox.sw.y);
pObj->mCalc |= A_WIDTH|A_HEIGHT|A_RADIUS;
}
/*
** The following array holds all the different kinds of objects.
** The special [] object is separate.
*/
static const PClass aClass[] = {
{ /* name */ "arc",
/* isline */ 1,
/* eJust */ 0,
/* xInit */ arcInit,
/* xNumProp */ 0,
/* xCheck */ arcCheck,
/* xChop */ 0,
/* xOffset */ boxOffset,
/* xFit */ 0,
/* xRender */ arcRender
},
{ /* name */ "arrow",
/* isline */ 1,
/* eJust */ 0,
/* xInit */ arrowInit,
/* xNumProp */ 0,
/* xCheck */ 0,
/* xChop */ 0,
/* xOffset */ lineOffset,
/* xFit */ 0,
/* xRender */ splineRender
},
{ /* name */ "box",
/* isline */ 0,
/* eJust */ 1,
/* xInit */ boxInit,
/* xNumProp */ 0,
/* xCheck */ 0,
/* xChop */ boxChop,
/* xOffset */ boxOffset,
/* xFit */ boxFit,
/* xRender */ boxRender
},
{ /* name */ "circle",
/* isline */ 0,
/* eJust */ 0,
/* xInit */ circleInit,
/* xNumProp */ circleNumProp,
/* xCheck */ 0,
/* xChop */ circleChop,
/* xOffset */ ellipseOffset,
/* xFit */ circleFit,
/* xRender */ circleRender
},
{ /* name */ "cylinder",
/* isline */ 0,
/* eJust */ 1,
/* xInit */ cylinderInit,
/* xNumProp */ 0,
/* xCheck */ 0,
/* xChop */ boxChop,
/* xOffset */ cylinderOffset,
/* xFit */ cylinderFit,
/* xRender */ cylinderRender
},
{ /* name */ "diamond",
/* isline */ 0,
/* eJust */ 0,
/* xInit */ diamondInit,
/* xNumProp */ 0,
/* xCheck */ 0,
/* xChop */ boxChop,
/* xOffset */ diamondOffset,
/* xFit */ diamondFit,
/* xRender */ diamondRender
},
{ /* name */ "dot",
/* isline */ 0,
/* eJust */ 0,
/* xInit */ dotInit,
/* xNumProp */ dotNumProp,
/* xCheck */ dotCheck,
/* xChop */ circleChop,
/* xOffset */ dotOffset,
/* xFit */ 0,
/* xRender */ dotRender
},
{ /* name */ "ellipse",
/* isline */ 0,
/* eJust */ 0,
/* xInit */ ellipseInit,
/* xNumProp */ 0,
/* xCheck */ 0,
/* xChop */ ellipseChop,
/* xOffset */ ellipseOffset,
/* xFit */ boxFit,
/* xRender */ ellipseRender
},
{ /* name */ "file",
/* isline */ 0,
/* eJust */ 1,
/* xInit */ fileInit,
/* xNumProp */ 0,
/* xCheck */ 0,
/* xChop */ boxChop,
/* xOffset */ fileOffset,
/* xFit */ fileFit,
/* xRender */ fileRender
},
{ /* name */ "line",
/* isline */ 1,
/* eJust */ 0,
/* xInit */ lineInit,
/* xNumProp */ 0,
/* xCheck */ 0,
/* xChop */ 0,
/* xOffset */ lineOffset,
/* xFit */ 0,
/* xRender */ splineRender
},
{ /* name */ "move",
/* isline */ 1,
/* eJust */ 0,
/* xInit */ moveInit,
/* xNumProp */ 0,
/* xCheck */ 0,
/* xChop */ 0,
/* xOffset */ boxOffset,
/* xFit */ 0,
/* xRender */ moveRender
},
{ /* name */ "oval",
/* isline */ 0,
/* eJust */ 1,
/* xInit */ ovalInit,
/* xNumProp */ ovalNumProp,
/* xCheck */ 0,
/* xChop */ boxChop,
/* xOffset */ boxOffset,
/* xFit */ ovalFit,
/* xRender */ boxRender
},
{ /* name */ "spline",
/* isline */ 1,
/* eJust */ 0,
/* xInit */ splineInit,
/* xNumProp */ 0,
/* xCheck */ 0,
/* xChop */ 0,
/* xOffset */ lineOffset,
/* xFit */ 0,
/* xRender */ splineRender
},
{ /* name */ "text",
/* isline */ 0,
/* eJust */ 0,
/* xInit */ textInit,
/* xNumProp */ 0,
/* xCheck */ 0,
/* xChop */ boxChop,
/* xOffset */ textOffset,
/* xFit */ boxFit,
/* xRender */ textRender
},
};
static const PClass sublistClass =
{ /* name */ "[]",
/* isline */ 0,
/* eJust */ 0,
/* xInit */ sublistInit,
/* xNumProp */ 0,
/* xCheck */ 0,
/* xChop */ 0,
/* xOffset */ boxOffset,
/* xFit */ 0,
/* xRender */ 0
};
static const PClass noopClass =
{ /* name */ "noop",
/* isline */ 0,
/* eJust */ 0,
/* xInit */ 0,
/* xNumProp */ 0,
/* xCheck */ 0,
/* xChop */ 0,
/* xOffset */ boxOffset,
/* xFit */ 0,
/* xRender */ 0
};
/*
** Reduce the length of the line segment by amt (if possible) by
** modifying the location of *t.
*/
static void pik_chop(PPoint *f, PPoint *t, PNum amt){
PNum dx = t->x - f->x;
PNum dy = t->y - f->y;
PNum dist = hypot(dx,dy);
PNum r;
if( dist<=amt ){
*t = *f;
return;
}
r = 1.0 - amt/dist;
t->x = f->x + r*dx;
t->y = f->y + r*dy;
}
/*
** Draw an arrowhead on the end of the line segment from pFrom to pTo.
** Also, shorten the line segment (by changing the value of pTo) so that
** the shaft of the arrow does not extend into the arrowhead.
*/
static void pik_draw_arrowhead(Pik *p, PPoint *f, PPoint *t, PObj *pObj){
PNum dx = t->x - f->x;
PNum dy = t->y - f->y;
PNum dist = hypot(dx,dy);
PNum h = p->hArrow * pObj->sw;
PNum w = p->wArrow * pObj->sw;
PNum e1, ddx, ddy;
PNum bx, by;
if( pObj->color<0.0 ) return;
if( pObj->sw<=0.0 ) return;
if( dist<=0.0 ) return; /* Unable */
dx /= dist;
dy /= dist;
e1 = dist - h;
if( e1<0.0 ){
e1 = 0.0;
h = dist;
}
ddx = -w*dy;
ddy = w*dx;
bx = f->x + e1*dx;
by = f->y + e1*dy;
pik_append_xy(p,"<polygon points=\"", t->x, t->y);
pik_append_xy(p," ",bx-ddx, by-ddy);
pik_append_xy(p," ",bx+ddx, by+ddy);
pik_append_clr(p,"\" style=\"fill:",pObj->color,"\"/>\n",0);
pik_chop(f,t,h/2);
}
/*
** Compute the relative offset to an edge location from the reference for a
** an statement.
*/
static PPoint pik_elem_offset(Pik *p, PObj *pObj, int cp){
return pObj->type->xOffset(p, pObj, cp);
}
/*
** Append raw text to zOut
*/
static void pik_append(Pik *p, const char *zText, int n){
if( n<0 ) n = (int)strlen(zText);
if( p->nOut+n>=p->nOutAlloc ){
int nNew = (p->nOut+n)*2 + 1;
char *z = realloc(p->zOut, nNew);
if( z==0 ){
pik_error(p, 0, 0);
return;
}
p->zOut = z;
p->nOutAlloc = nNew;
}
memcpy(p->zOut+p->nOut, zText, n);
p->nOut += n;
p->zOut[p->nOut] = 0;
}
/*
** Given a string and its length, returns true if the string begins
** with a construct which syntactically matches an HTML entity escape
** sequence (without checking for whether it's a known entity). Always
** returns false if zText[0] is false or n<4. Entities match the
** equivalent of the regexes `&#[0-9]{2,};` and
** `&[a-zA-Z][a-zA-Z0-9]+;`.
*/
static int pik_isentity(char const * zText, int n){
int i = 0;
if( n<4 || '&'!=zText[0] ) return 0;
n--;
zText++;
if( '#'==zText[0] ){
zText++;
n--;
for(i=0; i<n; i++){
if( i>1 && ';'==zText[i] ) return 1;
else if( zText[i]<'0' || zText[i]>'9' ) return 0;
/* Note that &#nn; values nn<32d are not legal entities. */
}
}else{
for(i=0; i<n; i++){
if( i>1 && ';'==zText[i] ) return 1;
else if( i>0 && zText[i]>='0' && zText[i]<='9' ){
continue;
}else if( zText[i]<'A' || zText[i]>'z'
|| (zText[i]>'Z' && zText[i]<'a') ) return 0;
}
}
return 0;
}
/*
** Append text to zOut with HTML characters escaped.
**
** * The space character is changed into non-breaking space (U+00a0)
** if mFlags has the 0x01 bit set. This is needed when outputting
** text to preserve leading and trailing whitespace. Turns out we
** cannot use as that is an HTML-ism and is not valid in XML.
**
** * The "&" character is changed into "&" if mFlags has the
** 0x02 bit set. This is needed when generating error message text.
**
** * Except for the above, only "<" and ">" are escaped.
*/
static void pik_append_text(Pik *p, const char *zText, int n, int mFlags){
int i;
char c = 0;
int bQSpace = mFlags & 1;
int bQAmp = mFlags & 2;
if( n<0 ) n = (int)strlen(zText);
while( n>0 ){
for(i=0; i<n; i++){
c = zText[i];
if( c=='<' || c=='>' ) break;
if( c==' ' && bQSpace ) break;
if( c=='&' && bQAmp ) break;
}
if( i ) pik_append(p, zText, i);
if( i==n ) break;
switch( c ){
case '<': { pik_append(p, "<", 4); break; }
case '>': { pik_append(p, ">", 4); break; }
case ' ': { pik_append(p, "\302\240;", 2); break; }
case '&':
if( pik_isentity(zText+i, n-i) ){ pik_append(p, "&", 1); }
else { pik_append(p, "&", 5); }
}
i++;
n -= i;
zText += i;
i = 0;
}
}
/*
** Append error message text. This is either a raw append, or an append
** with HTML escapes, depending on whether the PIKCHR_PLAINTEXT_ERRORS flag
** is set.
*/
static void pik_append_errtxt(Pik *p, const char *zText, int n){
if( p->mFlags & PIKCHR_PLAINTEXT_ERRORS ){
pik_append(p, zText, n);
}else{
pik_append_text(p, zText, n, 0);
}
}
/* Append a PNum value
*/
static void pik_append_num(Pik *p, const char *z,PNum v){
char buf[100];
snprintf(buf, sizeof(buf)-1, "%.10g", (double)v);
buf[sizeof(buf)-1] = 0;
pik_append(p, z, -1);
pik_append(p, buf, -1);
}
/* Append a PPoint value (Used for debugging only)
*/
static void pik_append_point(Pik *p, const char *z, PPoint *pPt){
char buf[100];
snprintf(buf, sizeof(buf)-1, "%.10g,%.10g",
(double)pPt->x, (double)pPt->y);
buf[sizeof(buf)-1] = 0;
pik_append(p, z, -1);
pik_append(p, buf, -1);
}
/*
** Invert the RGB color so that it is appropriate for dark mode.
** Variable x hold the initial color. The color is intended for use
** as a background color if isBg is true, and as a foreground color
** if isBg is false.
*/
static int pik_color_to_dark_mode(int x, int isBg){
int r, g, b;
int mn, mx;
x = 0xffffff - x;
r = (x>>16) & 0xff;
g = (x>>8) & 0xff;
b = x & 0xff;
mx = r;
if( g>mx ) mx = g;
if( b>mx ) mx = b;
mn = r;
if( g<mn ) mn = g;
if( b<mn ) mn = b;
r = mn + (mx-r);
g = mn + (mx-g);
b = mn + (mx-b);
if( isBg ){
if( mx>127 ){
r = (127*r)/mx;
g = (127*g)/mx;
b = (127*b)/mx;
}
}else{
if( mn<128 && mx>mn ){
r = 127 + ((r-mn)*128)/(mx-mn);
g = 127 + ((g-mn)*128)/(mx-mn);
b = 127 + ((b-mn)*128)/(mx-mn);
}
}
return r*0x10000 + g*0x100 + b;
}
/* Append a PNum value surrounded by text. Do coordinate transformations
** on the value.
*/
static void pik_append_x(Pik *p, const char *z1, PNum v, const char *z2){
char buf[200];
v -= p->bbox.sw.x;
snprintf(buf, sizeof(buf)-1, "%s%g%s", z1, p->rScale*v, z2);
buf[sizeof(buf)-1] = 0;
pik_append(p, buf, -1);
}
static void pik_append_y(Pik *p, const char *z1, PNum v, const char *z2){
char buf[200];
v = p->bbox.ne.y - v;
snprintf(buf, sizeof(buf)-1, "%s%g%s", z1, p->rScale*v, z2);
buf[sizeof(buf)-1] = 0;
pik_append(p, buf, -1);
}
static void pik_append_xy(Pik *p, const char *z1, PNum x, PNum y){
char buf[200];
x = x - p->bbox.sw.x;
y = p->bbox.ne.y - y;
snprintf(buf, sizeof(buf)-1, "%s%g,%g", z1, p->rScale*x, p->rScale*y);
buf[sizeof(buf)-1] = 0;
pik_append(p, buf, -1);
}
static void pik_append_dis(Pik *p, const char *z1, PNum v, const char *z2){
char buf[200];
snprintf(buf, sizeof(buf)-1, "%s%g%s", z1, p->rScale*v, z2);
buf[sizeof(buf)-1] = 0;
pik_append(p, buf, -1);
}
/* Append a color specification to the output.
**
** In PIKCHR_DARK_MODE, the color is inverted. The "bg" flags indicates that
** the color is intended for use as a background color if true, or as a
** foreground color if false. The distinction only matters for color
** inversions in PIKCHR_DARK_MODE.
*/
static void pik_append_clr(Pik *p,const char *z1,PNum v,const char *z2,int bg){
char buf[200];
int x = pik_round(v);
int r, g, b;
if( x==0 && p->fgcolor>0 && !bg ){
x = p->fgcolor;
}else if( bg && x>=0xffffff && p->bgcolor>0 ){
x = p->bgcolor;
}else if( p->mFlags & PIKCHR_DARK_MODE ){
x = pik_color_to_dark_mode(x,bg);
}
r = (x>>16) & 0xff;
g = (x>>8) & 0xff;
b = x & 0xff;
snprintf(buf, sizeof(buf)-1, "%srgb(%d,%d,%d)%s", z1, r, g, b, z2);
buf[sizeof(buf)-1] = 0;
pik_append(p, buf, -1);
}
/* Append an SVG path A record:
**
** A r1 r2 0 0 0 x y
*/
static void pik_append_arc(Pik *p, PNum r1, PNum r2, PNum x, PNum y){
char buf[200];
x = x - p->bbox.sw.x;
y = p->bbox.ne.y - y;
snprintf(buf, sizeof(buf)-1, "A%g %g 0 0 0 %g %g",
p->rScale*r1, p->rScale*r2,
p->rScale*x, p->rScale*y);
buf[sizeof(buf)-1] = 0;
pik_append(p, buf, -1);
}
/* Append a style="..." text. But, leave the quote unterminated, in case
** the caller wants to add some more.
**
** eFill is non-zero to fill in the background, or 0 if no fill should
** occur. Non-zero values of eFill determine the "bg" flag to pik_append_clr()
** for cases when pObj->fill==pObj->color
**
** 1 fill is background, and color is foreground.
** 2 fill and color are both foreground. (Used by "dot" objects)
** 3 fill and color are both background. (Used by most other objs)
*/
static void pik_append_style(Pik *p, PObj *pObj, int eFill){
int clrIsBg = 0;
pik_append(p, " style=\"", -1);
if( pObj->fill>=0 && eFill ){
int fillIsBg = 1;
if( pObj->fill==pObj->color ){
if( eFill==2 ) fillIsBg = 0;
if( eFill==3 ) clrIsBg = 1;
}
pik_append_clr(p, "fill:", pObj->fill, ";", fillIsBg);
}else{
pik_append(p,"fill:none;",-1);
}
if( pObj->sw>=0.0 && pObj->color>=0.0 ){
PNum sw = pObj->sw;
pik_append_dis(p, "stroke-width:", sw, ";");
if( pObj->nPath>2 && pObj->rad<=pObj->sw ){
pik_append(p, "stroke-linejoin:round;", -1);
}
pik_append_clr(p, "stroke:",pObj->color,";",clrIsBg);
if( pObj->dotted>0.0 ){
PNum v = pObj->dotted;
if( sw<2.1/p->rScale ) sw = 2.1/p->rScale;
pik_append_dis(p,"stroke-dasharray:",sw,"");
pik_append_dis(p,",",v,";");
}else if( pObj->dashed>0.0 ){
PNum v = pObj->dashed;
pik_append_dis(p,"stroke-dasharray:",v,"");
pik_append_dis(p,",",v,";");
}
}
}
/*
** Compute the vertical locations for all text items in the
** object pObj. In other words, set every pObj->aTxt[*].eCode
** value to contain exactly one of: TP_ABOVE2, TP_ABOVE, TP_CENTER,
** TP_BELOW, or TP_BELOW2 is set.
*/
static void pik_txt_vertical_layout(PObj *pObj){
int n, i;
PToken *aTxt;
n = pObj->nTxt;
if( n==0 ) return;
aTxt = pObj->aTxt;
if( n==1 ){
if( (aTxt[0].eCode & TP_VMASK)==0 ){
aTxt[0].eCode |= TP_CENTER;
}
}else{
int allSlots = 0;
int aFree[5];
int iSlot;
int j, mJust;
/* If there is more than one TP_ABOVE, change the first to TP_ABOVE2. */
for(j=mJust=0, i=n-1; i>=0; i--){
if( aTxt[i].eCode & TP_ABOVE ){
if( j==0 ){
j++;
mJust = aTxt[i].eCode & TP_JMASK;
}else if( j==1 && mJust!=0 && (aTxt[i].eCode & mJust)==0 ){
j++;
}else{
aTxt[i].eCode = (aTxt[i].eCode & ~TP_VMASK) | TP_ABOVE2;
break;
}
}
}
/* If there is more than one TP_BELOW, change the last to TP_BELOW2 */
for(j=mJust=0, i=0; i<n; i++){
if( aTxt[i].eCode & TP_BELOW ){
if( j==0 ){
j++;
mJust = aTxt[i].eCode & TP_JMASK;
}else if( j==1 && mJust!=0 && (aTxt[i].eCode & mJust)==0 ){
j++;
}else{
aTxt[i].eCode = (aTxt[i].eCode & ~TP_VMASK) | TP_BELOW2;
break;
}
}
}
/* Compute a mask of all slots used */
for(i=0; i<n; i++) allSlots |= aTxt[i].eCode & TP_VMASK;
/* Set of an array of available slots */
if( n==2
&& ((aTxt[0].eCode|aTxt[1].eCode)&TP_JMASK)==(TP_LJUST|TP_RJUST)
){
/* Special case of two texts that have opposite justification:
** Allow them both to float to center. */
iSlot = 2;
aFree[0] = aFree[1] = TP_CENTER;
}else{
/* Set up the arrow so that available slots are filled from top to
** bottom */
iSlot = 0;
if( n>=4 && (allSlots & TP_ABOVE2)==0 ) aFree[iSlot++] = TP_ABOVE2;
if( (allSlots & TP_ABOVE)==0 ) aFree[iSlot++] = TP_ABOVE;
if( (n&1)!=0 ) aFree[iSlot++] = TP_CENTER;
if( (allSlots & TP_BELOW)==0 ) aFree[iSlot++] = TP_BELOW;
if( n>=4 && (allSlots & TP_BELOW2)==0 ) aFree[iSlot++] = TP_BELOW2;
}
/* Set the VMASK for all unassigned texts */
for(i=iSlot=0; i<n; i++){
if( (aTxt[i].eCode & TP_VMASK)==0 ){
aTxt[i].eCode |= aFree[iSlot++];
}
}
}
}
/* Return the font scaling factor associated with the input text attribute.
*/
static PNum pik_font_scale(PToken *t){
PNum scale = 1.0;
if( t->eCode & TP_BIG ) scale *= 1.25;
if( t->eCode & TP_SMALL ) scale *= 0.8;
if( t->eCode & TP_XTRA ) scale *= scale;
return scale;
}
/* Append multiple <text> SVG elements for the text fields of the PObj.
** Parameters:
**
** p The Pik object into which we are rendering
**
** pObj Object containing the text to be rendered
**
** pBox If not NULL, do no rendering at all. Instead
** expand the box object so that it will include all
** of the text.
*/
static void pik_append_txt(Pik *p, PObj *pObj, PBox *pBox){
PNum jw; /* Justification margin relative to center */
PNum ha2 = 0.0; /* Height of the top row of text */
PNum ha1 = 0.0; /* Height of the second "above" row */
PNum hc = 0.0; /* Height of the center row */
PNum hb1 = 0.0; /* Height of the first "below" row of text */
PNum hb2 = 0.0; /* Height of the second "below" row */
PNum yBase = 0.0;
PNum sw = pObj->sw>=0.0 ? pObj->sw : 0;
int n, i, nz;
PNum x, y, orig_y, s;
const char *z;
PToken *aTxt;
unsigned allMask = 0;
if( p->nErr ) return;
if( pObj->nTxt==0 ) return;
aTxt = pObj->aTxt;
n = pObj->nTxt;
pik_txt_vertical_layout(pObj);
x = pObj->ptAt.x;
for(i=0; i<n; i++) allMask |= pObj->aTxt[i].eCode;
if( pObj->type->isLine ){
hc = sw*1.5;
}else if( pObj->rad>0.0 && pObj->type->xInit==cylinderInit ){
yBase = -0.75*pObj->rad;
}
if( allMask & TP_CENTER ){
for(i=0; i<n; i++){
if( pObj->aTxt[i].eCode & TP_CENTER ){
s = pik_font_scale(pObj->aTxt+i);
if( hc<s*p->charHeight ) hc = s*p->charHeight;
}
}
}
if( allMask & TP_ABOVE ){
for(i=0; i<n; i++){
if( pObj->aTxt[i].eCode & TP_ABOVE ){
s = pik_font_scale(pObj->aTxt+i)*p->charHeight;
if( ha1<s ) ha1 = s;
}
}
if( allMask & TP_ABOVE2 ){
for(i=0; i<n; i++){
if( pObj->aTxt[i].eCode & TP_ABOVE2 ){
s = pik_font_scale(pObj->aTxt+i)*p->charHeight;
if( ha2<s ) ha2 = s;
}
}
}
}
if( allMask & TP_BELOW ){
for(i=0; i<n; i++){
if( pObj->aTxt[i].eCode & TP_BELOW ){
s = pik_font_scale(pObj->aTxt+i)*p->charHeight;
if( hb1<s ) hb1 = s;
}
}
if( allMask & TP_BELOW2 ){
for(i=0; i<n; i++){
if( pObj->aTxt[i].eCode & TP_BELOW2 ){
s = pik_font_scale(pObj->aTxt+i)*p->charHeight;
if( hb2<s ) hb2 = s;
}
}
}
}
if( pObj->type->eJust==1 ){
jw = 0.5*(pObj->w - 0.5*(p->charWidth + sw));
}else{
jw = 0.0;
}
for(i=0; i<n; i++){
PToken *t = &aTxt[i];
PNum xtraFontScale = pik_font_scale(t);
PNum nx = 0;
orig_y = pObj->ptAt.y;
y = yBase;
if( t->eCode & TP_ABOVE2 ) y += 0.5*hc + ha1 + 0.5*ha2;
if( t->eCode & TP_ABOVE ) y += 0.5*hc + 0.5*ha1;
if( t->eCode & TP_BELOW ) y -= 0.5*hc + 0.5*hb1;
if( t->eCode & TP_BELOW2 ) y -= 0.5*hc + hb1 + 0.5*hb2;
if( t->eCode & TP_LJUST ) nx -= jw;
if( t->eCode & TP_RJUST ) nx += jw;
if( pBox!=0 ){
/* If pBox is not NULL, do not draw any <text>. Instead, just expand
** pBox to include the text */
PNum cw = pik_text_length(t, t->eCode & TP_MONO)*p->charWidth*xtraFontScale*0.01;
PNum ch = p->charHeight*0.5*xtraFontScale;
PNum x0, y0, x1, y1; /* Boundary of text relative to pObj->ptAt */
if( (t->eCode & (TP_BOLD|TP_MONO))==TP_BOLD ){
cw *= 1.1;
}
if( t->eCode & TP_RJUST ){
x0 = nx;
y0 = y-ch;
x1 = nx-cw;
y1 = y+ch;
}else if( t->eCode & TP_LJUST ){
x0 = nx;
y0 = y-ch;
x1 = nx+cw;
y1 = y+ch;
}else{
x0 = nx+cw/2;
y0 = y+ch;
x1 = nx-cw/2;
y1 = y-ch;
}
if( (t->eCode & TP_ALIGN)!=0 && pObj->nPath>=2 ){
int nn = pObj->nPath;
PNum dx = pObj->aPath[nn-1].x - pObj->aPath[0].x;
PNum dy = pObj->aPath[nn-1].y - pObj->aPath[0].y;
if( dx!=0 || dy!=0 ){
PNum dist = hypot(dx,dy);
PNum tt;
dx /= dist;
dy /= dist;
tt = dx*x0 - dy*y0;
y0 = dy*x0 - dx*y0;
x0 = tt;
tt = dx*x1 - dy*y1;
y1 = dy*x1 - dx*y1;
x1 = tt;
}
}
pik_bbox_add_xy(pBox, x+x0, orig_y+y0);
pik_bbox_add_xy(pBox, x+x1, orig_y+y1);
continue;
}
nx += x;
y += orig_y;
pik_append_x(p, "<text x=\"", nx, "\"");
pik_append_y(p, " y=\"", y, "\"");
if( t->eCode & TP_RJUST ){
pik_append(p, " text-anchor=\"end\"", -1);
}else if( t->eCode & TP_LJUST ){
pik_append(p, " text-anchor=\"start\"", -1);
}else{
pik_append(p, " text-anchor=\"middle\"", -1);
}
if( t->eCode & TP_ITALIC ){
pik_append(p, " font-style=\"italic\"", -1);
}
if( t->eCode & TP_BOLD ){
pik_append(p, " font-weight=\"bold\"", -1);
}
if( t->eCode & TP_MONO ){
pik_append(p, " font-family=\"monospace\"", -1);
}
if( pObj->color>=0.0 ){
pik_append_clr(p, " fill=\"", pObj->color, "\"",0);
}
xtraFontScale *= p->fontScale;
if( xtraFontScale<=0.99 || xtraFontScale>=1.01 ){
pik_append_num(p, " font-size=\"", xtraFontScale*100.0);
pik_append(p, "%\"", 2);
}
if( (t->eCode & TP_ALIGN)!=0 && pObj->nPath>=2 ){
int nn = pObj->nPath;
PNum dx = pObj->aPath[nn-1].x - pObj->aPath[0].x;
PNum dy = pObj->aPath[nn-1].y - pObj->aPath[0].y;
if( dx!=0 || dy!=0 ){
PNum ang = atan2(dy,dx)*-180/M_PI;
pik_append_num(p, " transform=\"rotate(", ang);
pik_append_xy(p, " ", x, orig_y);
pik_append(p,")\"",2);
}
}
pik_append(p," dominant-baseline=\"central\">",-1);
if( t->n>=2 && t->z[0]=='"' ){
z = t->z+1;
nz = t->n-2;
}else{
z = t->z;
nz = t->n;
}
while( nz>0 ){
int j;
for(j=0; j<nz && z[j]!='\\'; j++){}
if( j ) pik_append_text(p, z, j, 0x3);
if( j<nz && (j+1==nz || z[j+1]=='\\') ){
pik_append(p, "\", -1);
j++;
}
nz -= j+1;
z += j+1;
}
pik_append(p, "</text>\n", -1);
}
}
/*
** Append text (that will go inside of a <pre>...</pre>) that
** shows the context of an error token.
*/
static void pik_error_context(Pik *p, PToken *pErr, int nContext){
int iErrPt; /* Index of first byte of error from start of input */
int iErrCol; /* Column of the error token on its line */
int iStart; /* Start position of the error context */
int iEnd; /* End position of the error context */
int iLineno; /* Line number of the error */
int iFirstLineno; /* Line number of start of error context */
int i; /* Loop counter */
int iBump = 0; /* Bump the location of the error cursor */
char zLineno[24]; /* Buffer in which to generate line numbers */
iErrPt = (int)(pErr->z - p->sIn.z);
if( iErrPt>=(int)p->sIn.n ){
iErrPt = p->sIn.n-1;
iBump = 1;
}else{
while( iErrPt>0 && (p->sIn.z[iErrPt]=='\n' || p->sIn.z[iErrPt]=='\r') ){
iErrPt--;
iBump = 1;
}
}
iLineno = 1;
for(i=0; i<iErrPt; i++){
if( p->sIn.z[i]=='\n' ){
iLineno++;
}
}
iStart = 0;
iFirstLineno = 1;
while( iFirstLineno+nContext<iLineno ){
while( p->sIn.z[iStart]!='\n' ){ iStart++; }
iStart++;
iFirstLineno++;
}
for(iEnd=iErrPt; p->sIn.z[iEnd]!=0 && p->sIn.z[iEnd]!='\n'; iEnd++){}
i = iStart;
while( iFirstLineno<=iLineno ){
snprintf(zLineno,sizeof(zLineno)-1,"/* %4d */ ", iFirstLineno++);
zLineno[sizeof(zLineno)-1] = 0;
pik_append(p, zLineno, -1);
for(i=iStart; p->sIn.z[i]!=0 && p->sIn.z[i]!='\n'; i++){}
pik_append_errtxt(p, p->sIn.z+iStart, i-iStart);
iStart = i+1;
pik_append(p, "\n", 1);
}
for(iErrCol=0, i=iErrPt; i>0 && p->sIn.z[i]!='\n'; iErrCol++, i--){}
for(i=0; i<iErrCol+11+iBump; i++){ pik_append(p, " ", 1); }
for(i=0; i<(int)pErr->n; i++) pik_append(p, "^", 1);
pik_append(p, "\n", 1);
}
/*
** Generate an error message for the output. pErr is the token at which
** the error should point. zMsg is the text of the error message. If
** either pErr or zMsg is NULL, generate an out-of-memory error message.
**
** This routine is a no-op if there has already been an error reported.
*/
static void pik_error(Pik *p, PToken *pErr, const char *zMsg){
int i;
if( p==0 ) return;
if( p->nErr ) return;
p->nErr++;
if( zMsg==0 ){
if( p->mFlags & PIKCHR_PLAINTEXT_ERRORS ){
pik_append(p, "\nOut of memory\n", -1);
}else{
pik_append(p, "\n<div><p>Out of memory</p></div>\n", -1);
}
return;
}
if( pErr==0 ){
pik_append(p, "\n", 1);
pik_append_errtxt(p, zMsg, -1);
return;
}
if( (p->mFlags & PIKCHR_PLAINTEXT_ERRORS)==0 ){
pik_append(p, "<div><pre>\n", -1);
}
pik_error_context(p, pErr, 5);
pik_append(p, "ERROR: ", -1);
pik_append_errtxt(p, zMsg, -1);
pik_append(p, "\n", 1);
for(i=p->nCtx-1; i>=0; i--){
pik_append(p, "Called from:\n", -1);
pik_error_context(p, &p->aCtx[i], 0);
}
if( (p->mFlags & PIKCHR_PLAINTEXT_ERRORS)==0 ){
pik_append(p, "</pre></div>\n", -1);
}
}
/*
** Process an "assert( e1 == e2 )" statement. Always return NULL.
*/
static PObj *pik_assert(Pik *p, PNum e1, PToken *pEq, PNum e2){
char zE1[100], zE2[100], zMsg[300];
/* Convert the numbers to strings using %g for comparison. This
** limits the precision of the comparison to account for rounding error. */
snprintf(zE1, sizeof(zE1), "%g", e1); zE1[sizeof(zE1)-1] = 0;
snprintf(zE2, sizeof(zE2), "%g", e2); zE1[sizeof(zE2)-1] = 0;
if( strcmp(zE1,zE2)!=0 ){
snprintf(zMsg, sizeof(zMsg), "%.50s != %.50s", zE1, zE2);
pik_error(p, pEq, zMsg);
}
return 0;
}
/*
** Process an "assert( place1 == place2 )" statement. Always return NULL.
*/
static PObj *pik_position_assert(Pik *p, PPoint *e1, PToken *pEq, PPoint *e2){
char zE1[100], zE2[100], zMsg[210];
/* Convert the numbers to strings using %g for comparison. This
** limits the precision of the comparison to account for rounding error. */
snprintf(zE1, sizeof(zE1), "(%g,%g)", e1->x, e1->y); zE1[sizeof(zE1)-1] = 0;
snprintf(zE2, sizeof(zE2), "(%g,%g)", e2->x, e2->y); zE1[sizeof(zE2)-1] = 0;
if( strcmp(zE1,zE2)!=0 ){
snprintf(zMsg, sizeof(zMsg), "%s != %s", zE1, zE2);
pik_error(p, pEq, zMsg);
}
return 0;
}
/* Free a complete list of objects */
static void pik_elist_free(Pik *p, PList *pList){
int i;
if( pList==0 ) return;
for(i=0; i<pList->n; i++){
pik_elem_free(p, pList->a[i]);
}
free(pList->a);
free(pList);
return;
}
/* Free a single object, and its substructure */
static void pik_elem_free(Pik *p, PObj *pObj){
if( pObj==0 ) return;
free(pObj->zName);
pik_elist_free(p, pObj->pSublist);
free(pObj->aPath);
free(pObj);
}
/* Convert a numeric literal into a number. Return that number.
** There is no error handling because the tokenizer has already
** assured us that the numeric literal is valid.
**
** Allowed number forms:
**
** (1) Floating point literal
** (2) Same as (1) but followed by a unit: "cm", "mm", "in",
** "px", "pt", or "pc".
** (3) Hex integers: 0x000000
**
** This routine returns the result in inches. If a different unit
** is specified, the conversion happens automatically.
*/
PNum pik_atof(PToken *num){
char *endptr;
PNum ans;
if( num->n>=3 && num->z[0]=='0' && (num->z[1]=='x'||num->z[1]=='X') ){
return (PNum)strtol(num->z+2, 0, 16);
}
ans = strtod(num->z, &endptr);
if( (int)(endptr - num->z)==(int)num->n-2 ){
char c1 = endptr[0];
char c2 = endptr[1];
if( c1=='c' && c2=='m' ){
ans /= 2.54;
}else if( c1=='m' && c2=='m' ){
ans /= 25.4;
}else if( c1=='p' && c2=='x' ){
ans /= 96;
}else if( c1=='p' && c2=='t' ){
ans /= 72;
}else if( c1=='p' && c2=='c' ){
ans /= 6;
}
}
return ans;
}
/*
** Compute the distance between two points
*/
static PNum pik_dist(PPoint *pA, PPoint *pB){
PNum dx, dy;
dx = pB->x - pA->x;
dy = pB->y - pA->y;
return hypot(dx,dy);
}
/* Return true if a bounding box is empty.
*/
static int pik_bbox_isempty(PBox *p){
return p->sw.x>p->ne.x;
}
/* Return true if point pPt is contained within the bounding box pBox
*/
static int pik_bbox_contains_point(PBox *pBox, PPoint *pPt){
if( pik_bbox_isempty(pBox) ) return 0;
if( pPt->x < pBox->sw.x ) return 0;
if( pPt->x > pBox->ne.x ) return 0;
if( pPt->y < pBox->sw.y ) return 0;
if( pPt->y > pBox->ne.y ) return 0;
return 1;
}
/* Initialize a bounding box to an empty container
*/
static void pik_bbox_init(PBox *p){
p->sw.x = 1.0;
p->sw.y = 1.0;
p->ne.x = 0.0;
p->ne.y = 0.0;
}
/* Enlarge the PBox of the first argument so that it fully
** covers the second PBox
*/
static void pik_bbox_addbox(PBox *pA, PBox *pB){
if( pik_bbox_isempty(pA) ){
*pA = *pB;
}
if( pik_bbox_isempty(pB) ) return;
if( pA->sw.x>pB->sw.x ) pA->sw.x = pB->sw.x;
if( pA->sw.y>pB->sw.y ) pA->sw.y = pB->sw.y;
if( pA->ne.x<pB->ne.x ) pA->ne.x = pB->ne.x;
if( pA->ne.y<pB->ne.y ) pA->ne.y = pB->ne.y;
}
/* Enlarge the PBox of the first argument, if necessary, so that
** it contains the point described by the 2nd and 3rd arguments.
*/
static void pik_bbox_add_xy(PBox *pA, PNum x, PNum y){
if( pik_bbox_isempty(pA) ){
pA->ne.x = x;
pA->ne.y = y;
pA->sw.x = x;
pA->sw.y = y;
return;
}
if( pA->sw.x>x ) pA->sw.x = x;
if( pA->sw.y>y ) pA->sw.y = y;
if( pA->ne.x<x ) pA->ne.x = x;
if( pA->ne.y<y ) pA->ne.y = y;
}
/* Enlarge the PBox so that it is able to contain an ellipse
** centered at x,y and with radiuses rx and ry.
*/
static void pik_bbox_addellipse(PBox *pA, PNum x, PNum y, PNum rx, PNum ry){
if( pik_bbox_isempty(pA) ){
pA->ne.x = x+rx;
pA->ne.y = y+ry;
pA->sw.x = x-rx;
pA->sw.y = y-ry;
return;
}
if( pA->sw.x>x-rx ) pA->sw.x = x-rx;
if( pA->sw.y>y-ry ) pA->sw.y = y-ry;
if( pA->ne.x<x+rx ) pA->ne.x = x+rx;
if( pA->ne.y<y+ry ) pA->ne.y = y+ry;
}
/* Append a new object onto the end of an object list. The
** object list is created if it does not already exist. Return
** the new object list.
*/
static PList *pik_elist_append(Pik *p, PList *pList, PObj *pObj){
if( pObj==0 ) return pList;
if( pList==0 ){
pList = malloc(sizeof(*pList));
if( pList==0 ){
pik_error(p, 0, 0);
pik_elem_free(p, pObj);
return 0;
}
memset(pList, 0, sizeof(*pList));
}
if( pList->n>=pList->nAlloc ){
int nNew = (pList->n+5)*2;
PObj **pNew = realloc(pList->a, sizeof(PObj*)*nNew);
if( pNew==0 ){
pik_error(p, 0, 0);
pik_elem_free(p, pObj);
return pList;
}
pList->nAlloc = nNew;
pList->a = pNew;
}
pList->a[pList->n++] = pObj;
p->list = pList;
return pList;
}
/* Convert an object class name into a PClass pointer
*/
static const PClass *pik_find_class(PToken *pId){
int first = 0;
int last = count(aClass) - 1;
do{
int mid = (first+last)/2;
int c = strncmp(aClass[mid].zName, pId->z, pId->n);
if( c==0 ){
c = aClass[mid].zName[pId->n]!=0;
if( c==0 ) return &aClass[mid];
}
if( c<0 ){
first = mid + 1;
}else{
last = mid - 1;
}
}while( first<=last );
return 0;
}
/* Allocate and return a new PObj object.
**
** If pId!=0 then pId is an identifier that defines the object class.
** If pStr!=0 then it is a STRING literal that defines a text object.
** If pSublist!=0 then this is a [...] object. If all three parameters
** are NULL then this is a no-op object used to define a PLACENAME.
*/
static PObj *pik_elem_new(Pik *p, PToken *pId, PToken *pStr,PList *pSublist){
PObj *pNew;
int miss = 0;
if( p->nErr ) return 0;
pNew = malloc( sizeof(*pNew) );
if( pNew==0 ){
pik_error(p,0,0);
pik_elist_free(p, pSublist);
return 0;
}
memset(pNew, 0, sizeof(*pNew));
p->cur = pNew;
p->nTPath = 1;
p->thenFlag = 0;
if( p->list==0 || p->list->n==0 ){
pNew->ptAt.x = pNew->ptAt.y = 0.0;
pNew->eWith = CP_C;
}else{
PObj *pPrior = p->list->a[p->list->n-1];
pNew->ptAt = pPrior->ptExit;
switch( p->eDir ){
default: pNew->eWith = CP_W; break;
case DIR_LEFT: pNew->eWith = CP_E; break;
case DIR_UP: pNew->eWith = CP_S; break;
case DIR_DOWN: pNew->eWith = CP_N; break;
}
}
p->aTPath[0] = pNew->ptAt;
pNew->with = pNew->ptAt;
pNew->outDir = pNew->inDir = p->eDir;
pNew->iLayer = pik_value_int(p, "layer", 5, &miss);
if( miss ) pNew->iLayer = 1000;
if( pNew->iLayer<0 ) pNew->iLayer = 0;
if( pSublist ){
pNew->type = &sublistClass;
pNew->pSublist = pSublist;
sublistClass.xInit(p,pNew);
return pNew;
}
if( pStr ){
PToken n;
n.z = "text";
n.n = 4;
pNew->type = pik_find_class(&n);
assert( pNew->type!=0 );
pNew->errTok = *pStr;
pNew->type->xInit(p, pNew);
pik_add_txt(p, pStr, pStr->eCode);
return pNew;
}
if( pId ){
const PClass *pClass;
pNew->errTok = *pId;
pClass = pik_find_class(pId);
if( pClass ){
pNew->type = pClass;
pNew->sw = pik_value(p, "thickness",9,0);
pNew->fill = pik_value(p, "fill",4,0);
pNew->color = pik_value(p, "color",5,0);
pClass->xInit(p, pNew);
return pNew;
}
pik_error(p, pId, "unknown object type");
pik_elem_free(p, pNew);
return 0;
}
pNew->type = &noopClass;
pNew->ptExit = pNew->ptEnter = pNew->ptAt;
return pNew;
}
/*
** If the ID token in the argument is the name of a macro, return
** the PMacro object for that macro
*/
static PMacro *pik_find_macro(Pik *p, PToken *pId){
PMacro *pMac;
for(pMac = p->pMacros; pMac; pMac=pMac->pNext){
if( pMac->macroName.n==pId->n
&& strncmp(pMac->macroName.z,pId->z,pId->n)==0
){
return pMac;
}
}
return 0;
}
/* Add a new macro
*/
static void pik_add_macro(
Pik *p, /* Current Pikchr diagram */
PToken *pId, /* The ID token that defines the macro name */
PToken *pCode /* Macro body inside of {...} */
){
PMacro *pNew = pik_find_macro(p, pId);
if( pNew==0 ){
pNew = malloc( sizeof(*pNew) );
if( pNew==0 ){
pik_error(p, 0, 0);
return;
}
pNew->pNext = p->pMacros;
p->pMacros = pNew;
pNew->macroName = *pId;
}
pNew->macroBody.z = pCode->z+1;
pNew->macroBody.n = pCode->n-2;
pNew->inUse = 0;
}
/*
** Set the output direction and exit point for an object
*/
static void pik_elem_set_exit(PObj *pObj, int eDir){
assert( ValidDir(eDir) );
pObj->outDir = eDir;
if( !pObj->type->isLine || pObj->bClose ){
pObj->ptExit = pObj->ptAt;
switch( pObj->outDir ){
default: pObj->ptExit.x += pObj->w*0.5; break;
case DIR_LEFT: pObj->ptExit.x -= pObj->w*0.5; break;
case DIR_UP: pObj->ptExit.y += pObj->h*0.5; break;
case DIR_DOWN: pObj->ptExit.y -= pObj->h*0.5; break;
}
}
}
/* Change the layout direction.
*/
static void pik_set_direction(Pik *p, int eDir){
assert( ValidDir(eDir) );
p->eDir = (unsigned char)eDir;
/* It seems to make sense to reach back into the last object and
** change its exit point (its ".end") to correspond to the new
** direction. Things just seem to work better this way. However,
** legacy PIC does *not* do this.
**
** The difference can be seen in a script like this:
**
** arrow; circle; down; arrow
**
** You can make pikchr render the above exactly like PIC
** by deleting the following three lines. But I (drh) think
** it works better with those lines in place.
*/
if( p->list && p->list->n ){
pik_elem_set_exit(p->list->a[p->list->n-1], eDir);
}
}
/* Move all coordinates contained within an object (and within its
** substructure) by dx, dy
*/
static void pik_elem_move(PObj *pObj, PNum dx, PNum dy){
int i;
pObj->ptAt.x += dx;
pObj->ptAt.y += dy;
pObj->ptEnter.x += dx;
pObj->ptEnter.y += dy;
pObj->ptExit.x += dx;
pObj->ptExit.y += dy;
pObj->bbox.ne.x += dx;
pObj->bbox.ne.y += dy;
pObj->bbox.sw.x += dx;
pObj->bbox.sw.y += dy;
for(i=0; i<pObj->nPath; i++){
pObj->aPath[i].x += dx;
pObj->aPath[i].y += dy;
}
if( pObj->pSublist ){
pik_elist_move(pObj->pSublist, dx, dy);
}
}
static void pik_elist_move(PList *pList, PNum dx, PNum dy){
int i;
for(i=0; i<pList->n; i++){
pik_elem_move(pList->a[i], dx, dy);
}
}
/*
** Check to see if it is ok to set the value of paraemeter mThis.
** Return 0 if it is ok. If it not ok, generate an appropriate
** error message and return non-zero.
**
** Flags are set in pObj so that the same object or conflicting
** objects may not be set again.
**
** To be ok, bit mThis must be clear and no more than one of
** the bits identified by mBlockers may be set.
*/
static int pik_param_ok(
Pik *p, /* For storing the error message (if any) */
PObj *pObj, /* The object under construction */
PToken *pId, /* Make the error point to this token */
int mThis /* Value we are trying to set */
){
if( pObj->mProp & mThis ){
pik_error(p, pId, "value is already set");
return 1;
}
if( pObj->mCalc & mThis ){
pik_error(p, pId, "value already fixed by prior constraints");
return 1;
}
pObj->mProp |= mThis;
return 0;
}
/*
** Set a numeric property like "width 7" or "radius 200%".
**
** The rAbs term is an absolute value to add in. rRel is
** a relative value by which to change the current value.
*/
void pik_set_numprop(Pik *p, PToken *pId, PRel *pVal){
PObj *pObj = p->cur;
switch( pId->eType ){
case T_HEIGHT:
if( pik_param_ok(p, pObj, pId, A_HEIGHT) ) return;
pObj->h = pObj->h*pVal->rRel + pVal->rAbs;
break;
case T_WIDTH:
if( pik_param_ok(p, pObj, pId, A_WIDTH) ) return;
pObj->w = pObj->w*pVal->rRel + pVal->rAbs;
break;
case T_RADIUS:
if( pik_param_ok(p, pObj, pId, A_RADIUS) ) return;
pObj->rad = pObj->rad*pVal->rRel + pVal->rAbs;
break;
case T_DIAMETER:
if( pik_param_ok(p, pObj, pId, A_RADIUS) ) return;
pObj->rad = pObj->rad*pVal->rRel + 0.5*pVal->rAbs; /* diam it 2x rad */
break;
case T_THICKNESS:
if( pik_param_ok(p, pObj, pId, A_THICKNESS) ) return;
pObj->sw = pObj->sw*pVal->rRel + pVal->rAbs;
break;
}
if( pObj->type->xNumProp ){
pObj->type->xNumProp(p, pObj, pId);
}
return;
}
/*
** Set a color property. The argument is an RGB value.
*/
void pik_set_clrprop(Pik *p, PToken *pId, PNum rClr){
PObj *pObj = p->cur;
switch( pId->eType ){
case T_FILL:
if( pik_param_ok(p, pObj, pId, A_FILL) ) return;
pObj->fill = rClr;
break;
case T_COLOR:
if( pik_param_ok(p, pObj, pId, A_COLOR) ) return;
pObj->color = rClr;
break;
}
if( pObj->type->xNumProp ){
pObj->type->xNumProp(p, pObj, pId);
}
return;
}
/*
** Set a "dashed" property like "dash 0.05"
**
** Use the value supplied by pVal if available. If pVal==0, use
** a default.
*/
void pik_set_dashed(Pik *p, PToken *pId, PNum *pVal){
PObj *pObj = p->cur;
PNum v;
switch( pId->eType ){
case T_DOTTED: {
v = pVal==0 ? pik_value(p,"dashwid",7,0) : *pVal;
pObj->dotted = v;
pObj->dashed = 0.0;
break;
}
case T_DASHED: {
v = pVal==0 ? pik_value(p,"dashwid",7,0) : *pVal;
pObj->dashed = v;
pObj->dotted = 0.0;
break;
}
}
}
/*
** If the current path information came from a "same" or "same as"
** reset it.
*/
static void pik_reset_samepath(Pik *p){
if( p->samePath ){
p->samePath = 0;
p->nTPath = 1;
}
}
/* Add a new term to the path for a line-oriented object by transferring
** the information in the ptTo field over onto the path and into ptFrom
** resetting the ptTo.
*/
static void pik_then(Pik *p, PToken *pToken, PObj *pObj){
int n;
if( !pObj->type->isLine ){
pik_error(p, pToken, "use with line-oriented objects only");
return;
}
n = p->nTPath - 1;
if( n<1 && (pObj->mProp & A_FROM)==0 ){
pik_error(p, pToken, "no prior path points");
return;
}
p->thenFlag = 1;
}
/* Advance to the next entry in p->aTPath. Return its index.
*/
static int pik_next_rpath(Pik *p, PToken *pErr){
int n = p->nTPath - 1;
if( n+1>=(int)count(p->aTPath) ){
pik_error(0, pErr, "too many path elements");
return n;
}
n++;
p->nTPath++;
p->aTPath[n] = p->aTPath[n-1];
p->mTPath = 0;
return n;
}
/* Add a direction term to an object. "up 0.5", or "left 3", or "down"
** or "down 50%".
*/
static void pik_add_direction(Pik *p, PToken *pDir, PRel *pVal){
PObj *pObj = p->cur;
int n;
int dir;
if( !pObj->type->isLine ){
if( pDir ){
pik_error(p, pDir, "use with line-oriented objects only");
}else{
PToken x = pik_next_semantic_token(&pObj->errTok);
pik_error(p, &x, "syntax error");
}
return;
}
pik_reset_samepath(p);
n = p->nTPath - 1;
if( p->thenFlag || p->mTPath==3 || n==0 ){
n = pik_next_rpath(p, pDir);
p->thenFlag = 0;
}
dir = pDir ? pDir->eCode : p->eDir;
switch( dir ){
case DIR_UP:
if( p->mTPath & 2 ) n = pik_next_rpath(p, pDir);
p->aTPath[n].y += pVal->rAbs + pObj->h*pVal->rRel;
p->mTPath |= 2;
break;
case DIR_DOWN:
if( p->mTPath & 2 ) n = pik_next_rpath(p, pDir);
p->aTPath[n].y -= pVal->rAbs + pObj->h*pVal->rRel;
p->mTPath |= 2;
break;
case DIR_RIGHT:
if( p->mTPath & 1 ) n = pik_next_rpath(p, pDir);
p->aTPath[n].x += pVal->rAbs + pObj->w*pVal->rRel;
p->mTPath |= 1;
break;
case DIR_LEFT:
if( p->mTPath & 1 ) n = pik_next_rpath(p, pDir);
p->aTPath[n].x -= pVal->rAbs + pObj->w*pVal->rRel;
p->mTPath |= 1;
break;
}
pObj->outDir = dir;
}
/* Process a movement attribute of one of these forms:
**
** pDist pHdgKW rHdg pEdgept
** GO distance HEADING angle
** GO distance compasspoint
*/
static void pik_move_hdg(
Pik *p, /* The Pikchr context */
PRel *pDist, /* Distance to move */
PToken *pHeading, /* "heading" keyword if present */
PNum rHdg, /* Angle argument to "heading" keyword */
PToken *pEdgept, /* EDGEPT keyword "ne", "sw", etc... */
PToken *pErr /* Token to use for error messages */
){
PObj *pObj = p->cur;
int n;
PNum rDist = pDist->rAbs + pik_value(p,"linewid",7,0)*pDist->rRel;
if( !pObj->type->isLine ){
pik_error(p, pErr, "use with line-oriented objects only");
return;
}
pik_reset_samepath(p);
do{
n = pik_next_rpath(p, pErr);
}while( n<1 );
if( pHeading ){
rHdg = fmod(rHdg,360.0);
}else if( pEdgept->eEdge==CP_C ){
pik_error(p, pEdgept, "syntax error");
return;
}else{
rHdg = pik_hdg_angle[pEdgept->eEdge];
}
if( rHdg<=45.0 ){
pObj->outDir = DIR_UP;
}else if( rHdg<=135.0 ){
pObj->outDir = DIR_RIGHT;
}else if( rHdg<=225.0 ){
pObj->outDir = DIR_DOWN;
}else if( rHdg<=315.0 ){
pObj->outDir = DIR_LEFT;
}else{
pObj->outDir = DIR_UP;
}
rHdg *= 0.017453292519943295769; /* degrees to radians */
p->aTPath[n].x += rDist*sin(rHdg);
p->aTPath[n].y += rDist*cos(rHdg);
p->mTPath = 2;
}
/* Process a movement attribute of the form "right until even with ..."
**
** pDir is the first keyword, "right" or "left" or "up" or "down".
** The movement is in that direction until its closest approach to
** the point specified by pPoint.
*/
static void pik_evenwith(Pik *p, PToken *pDir, PPoint *pPlace){
PObj *pObj = p->cur;
int n;
if( !pObj->type->isLine ){
pik_error(p, pDir, "use with line-oriented objects only");
return;
}
pik_reset_samepath(p);
n = p->nTPath - 1;
if( p->thenFlag || p->mTPath==3 || n==0 ){
n = pik_next_rpath(p, pDir);
p->thenFlag = 0;
}
switch( pDir->eCode ){
case DIR_DOWN:
case DIR_UP:
if( p->mTPath & 2 ) n = pik_next_rpath(p, pDir);
p->aTPath[n].y = pPlace->y;
p->mTPath |= 2;
break;
case DIR_RIGHT:
case DIR_LEFT:
if( p->mTPath & 1 ) n = pik_next_rpath(p, pDir);
p->aTPath[n].x = pPlace->x;
p->mTPath |= 1;
break;
}
pObj->outDir = pDir->eCode;
}
/* If the last referenced object is centered at point pPt then return
** a pointer to that object. If there is no prior object reference,
** or if the points are not the same, return NULL.
**
** This is a side-channel hack used to find the objects at which a
** line begins and ends. For example, in
**
** arrow from OBJ1 to OBJ2 chop
**
** The arrow object is normally just handed the coordinates of the
** centers for OBJ1 and OBJ2. But we also want to know the specific
** object named in case there are multiple objects centered at the
** same point.
**
** See forum post 1d46e3a0bc
*/
static PObj *pik_last_ref_object(Pik *p, PPoint *pPt){
PObj *pRes = 0;
if( p->lastRef==0 ) return 0;
if( p->lastRef->ptAt.x==pPt->x
&& p->lastRef->ptAt.y==pPt->y
){
pRes = p->lastRef;
}
p->lastRef = 0;
return pRes;
}
/* Set the "from" of an object
*/
static void pik_set_from(Pik *p, PObj *pObj, PToken *pTk, PPoint *pPt){
if( !pObj->type->isLine ){
pik_error(p, pTk, "use \"at\" to position this object");
return;
}
if( pObj->mProp & A_FROM ){
pik_error(p, pTk, "line start location already fixed");
return;
}
if( pObj->bClose ){
pik_error(p, pTk, "polygon is closed");
return;
}
if( p->nTPath>1 ){
PNum dx = pPt->x - p->aTPath[0].x;
PNum dy = pPt->y - p->aTPath[0].y;
int i;
for(i=1; i<p->nTPath; i++){
p->aTPath[i].x += dx;
p->aTPath[i].y += dy;
}
}
p->aTPath[0] = *pPt;
p->mTPath = 3;
pObj->mProp |= A_FROM;
pObj->pFrom = pik_last_ref_object(p, pPt);
}
/* Set the "to" of an object
*/
static void pik_add_to(Pik *p, PObj *pObj, PToken *pTk, PPoint *pPt){
int n = p->nTPath-1;
if( !pObj->type->isLine ){
pik_error(p, pTk, "use \"at\" to position this object");
return;
}
if( pObj->bClose ){
pik_error(p, pTk, "polygon is closed");
return;
}
pik_reset_samepath(p);
if( n==0 || p->mTPath==3 || p->thenFlag ){
n = pik_next_rpath(p, pTk);
}
p->aTPath[n] = *pPt;
p->mTPath = 3;
pObj->pTo = pik_last_ref_object(p, pPt);
}
static void pik_close_path(Pik *p, PToken *pErr){
PObj *pObj = p->cur;
if( p->nTPath<3 ){
pik_error(p, pErr,
"need at least 3 vertexes in order to close the polygon");
return;
}
if( pObj->bClose ){
pik_error(p, pErr, "polygon already closed");
return;
}
pObj->bClose = 1;
}
/* Lower the layer of the current object so that it is behind the
** given object.
*/
static void pik_behind(Pik *p, PObj *pOther){
PObj *pObj = p->cur;
if( p->nErr==0 && pObj->iLayer>=pOther->iLayer ){
pObj->iLayer = pOther->iLayer - 1;
}
}
/* Set the "at" of an object
*/
static void pik_set_at(Pik *p, PToken *pEdge, PPoint *pAt, PToken *pErrTok){
PObj *pObj;
static unsigned char eDirToCp[] = { CP_E, CP_S, CP_W, CP_N };
if( p->nErr ) return;
pObj = p->cur;
if( pObj->type->isLine ){
pik_error(p, pErrTok, "use \"from\" and \"to\" to position this object");
return;
}
if( pObj->mProp & A_AT ){
pik_error(p, pErrTok, "location fixed by prior \"at\"");
return;
}
pObj->mProp |= A_AT;
pObj->eWith = pEdge ? pEdge->eEdge : CP_C;
if( pObj->eWith>=CP_END ){
int dir = pObj->eWith==CP_END ? pObj->outDir : pObj->inDir;
pObj->eWith = eDirToCp[dir];
}
pObj->with = *pAt;
}
/*
** Try to add a text attribute to an object
*/
static void pik_add_txt(Pik *p, PToken *pTxt, int iPos){
PObj *pObj = p->cur;
PToken *pT;
if( pObj->nTxt >= count(pObj->aTxt) ){
pik_error(p, pTxt, "too many text terms");
return;
}
pT = &pObj->aTxt[pObj->nTxt++];
*pT = *pTxt;
pT->eCode = (short)iPos;
}
/* Merge "text-position" flags
*/
static int pik_text_position(int iPrev, PToken *pFlag){
int iRes = iPrev;
switch( pFlag->eType ){
case T_LJUST: iRes = (iRes&~TP_JMASK) | TP_LJUST; break;
case T_RJUST: iRes = (iRes&~TP_JMASK) | TP_RJUST; break;
case T_ABOVE: iRes = (iRes&~TP_VMASK) | TP_ABOVE; break;
case T_CENTER: iRes = (iRes&~TP_VMASK) | TP_CENTER; break;
case T_BELOW: iRes = (iRes&~TP_VMASK) | TP_BELOW; break;
case T_ITALIC: iRes |= TP_ITALIC; break;
case T_BOLD: iRes |= TP_BOLD; break;
case T_MONO: iRes |= TP_MONO; break;
case T_ALIGNED: iRes |= TP_ALIGN; break;
case T_BIG: if( iRes & TP_BIG ) iRes |= TP_XTRA;
else iRes = (iRes &~TP_SZMASK)|TP_BIG; break;
case T_SMALL: if( iRes & TP_SMALL ) iRes |= TP_XTRA;
else iRes = (iRes &~TP_SZMASK)|TP_SMALL; break;
}
return iRes;
}
/*
** Table of scale-factor estimates for variable-width characters.
** Actual character widths vary by font. These numbers are only
** guesses. And this table only provides data for ASCII.
**
** 100 means normal width.
*/
static const unsigned char awChar[] = {
/* Skip initial 32 control characters */
/* ' ' */ 45,
/* '!' */ 55,
/* '"' */ 62,
/* '#' */ 115,
/* '$' */ 90,
/* '%' */ 132,
/* '&' */ 125,
/* '\''*/ 40,
/* '(' */ 55,
/* ')' */ 55,
/* '*' */ 71,
/* '+' */ 115,
/* ',' */ 45,
/* '-' */ 48,
/* '.' */ 45,
/* '/' */ 50,
/* '0' */ 91,
/* '1' */ 91,
/* '2' */ 91,
/* '3' */ 91,
/* '4' */ 91,
/* '5' */ 91,
/* '6' */ 91,
/* '7' */ 91,
/* '8' */ 91,
/* '9' */ 91,
/* ':' */ 50,
/* ';' */ 50,
/* '<' */ 120,
/* '=' */ 120,
/* '>' */ 120,
/* '?' */ 78,
/* '@' */ 142,
/* 'A' */ 102,
/* 'B' */ 105,
/* 'C' */ 110,
/* 'D' */ 115,
/* 'E' */ 105,
/* 'F' */ 98,
/* 'G' */ 105,
/* 'H' */ 125,
/* 'I' */ 58,
/* 'J' */ 58,
/* 'K' */ 107,
/* 'L' */ 95,
/* 'M' */ 145,
/* 'N' */ 125,
/* 'O' */ 115,
/* 'P' */ 95,
/* 'Q' */ 115,
/* 'R' */ 107,
/* 'S' */ 95,
/* 'T' */ 97,
/* 'U' */ 118,
/* 'V' */ 102,
/* 'W' */ 150,
/* 'X' */ 100,
/* 'Y' */ 93,
/* 'Z' */ 100,
/* '[' */ 58,
/* '\\'*/ 50,
/* ']' */ 58,
/* '^' */ 119,
/* '_' */ 72,
/* '`' */ 72,
/* 'a' */ 86,
/* 'b' */ 92,
/* 'c' */ 80,
/* 'd' */ 92,
/* 'e' */ 85,
/* 'f' */ 52,
/* 'g' */ 92,
/* 'h' */ 92,
/* 'i' */ 47,
/* 'j' */ 47,
/* 'k' */ 88,
/* 'l' */ 48,
/* 'm' */ 135,
/* 'n' */ 92,
/* 'o' */ 86,
/* 'p' */ 92,
/* 'q' */ 92,
/* 'r' */ 69,
/* 's' */ 75,
/* 't' */ 58,
/* 'u' */ 92,
/* 'v' */ 80,
/* 'w' */ 121,
/* 'x' */ 81,
/* 'y' */ 80,
/* 'z' */ 76,
/* '{' */ 91,
/* '|'*/ 49,
/* '}' */ 91,
/* '~' */ 118,
};
/* Return an estimate of the width of the displayed characters
** in a character string. The returned value is 100 times the
** average character width.
**
** Omit "\" used to escape characters. And count entities like
** "<" as a single character. Multi-byte UTF8 characters count
** as a single character.
**
** Unless using a monospaced font, attempt to scale the answer by
** the actual characters seen. Wide characters count more than
** narrow characters. But the widths are only guesses.
**
*/
static int pik_text_length(const PToken *pToken, const int isMonospace){
const int stdAvg=100, monoAvg=82;
int n = pToken->n;
const char *z = pToken->z;
int cnt, j;
for(j=1, cnt=0; j<n-1; j++){
char c = z[j];
if( c=='\\' && z[j+1]!='&' ){
c = z[++j];
}else if( c=='&' ){
int k;
for(k=j+1; k<j+7 && z[k]!=0 && z[k]!=';'; k++){}
if( z[k]==';' ) j = k;
cnt += (isMonospace ? monoAvg : stdAvg) * 3 / 2;
continue;
}
if( (c & 0xc0)==0xc0 ){
while( j+1<n-1 && (z[j+1]&0xc0)==0x80 ){ j++; }
cnt += isMonospace ? monoAvg : stdAvg;
continue;
}
if( isMonospace ){
cnt += monoAvg;
}else if( c >= 0x20 && c <= 0x7e ){
cnt += awChar[c-0x20];
}else{
cnt += stdAvg;
}
}
return cnt;
}
/* Adjust the width, height, and/or radius of the object so that
** it fits around the text that has been added so far.
**
** (1) Only text specified prior to this attribute is considered.
** (2) The text size is estimated based on the charht and charwid
** variable settings.
** (3) The fitted attributes can be changed again after this
** attribute, for example using "width 110%" if this auto-fit
** underestimates the text size.
** (4) Previously set attributes will not be altered. In other words,
** "width 1in fit" might cause the height to change, but the
** width is now set.
** (5) This only works for attributes that have an xFit method.
**
** The eWhich parameter is:
**
** 1: Fit horizontally only
** 2: Fit vertically only
** 3: Fit both ways
*/
static void pik_size_to_fit(Pik *p, PToken *pFit, int eWhich){
PObj *pObj;
PNum w, h;
PBox bbox;
if( p->nErr ) return;
pObj = p->cur;
if( pObj->nTxt==0 ){
pik_error(0, pFit, "no text to fit to");
return;
}
if( pObj->type->xFit==0 ) return;
pik_bbox_init(&bbox);
pik_compute_layout_settings(p);
pik_append_txt(p, pObj, &bbox);
if( (eWhich & 1)!=0 || pObj->bAltAutoFit ){
w = (bbox.ne.x - bbox.sw.x) + p->charWidth;
}else{
w = 0;
}
if( (eWhich & 2)!=0 || pObj->bAltAutoFit ){
PNum h1, h2;
h1 = (bbox.ne.y - pObj->ptAt.y);
h2 = (pObj->ptAt.y - bbox.sw.y);
h = 2.0*( h1<h2 ? h2 : h1 ) + 0.5*p->charHeight;
}else{
h = 0;
}
pObj->type->xFit(p, pObj, w, h);
pObj->mProp |= A_FIT;
}
/* Set a local variable name to "val".
**
** The name might be a built-in variable or a color name. In either case,
** a new application-defined variable is set. Since app-defined variables
** are searched first, this will override any built-in variables.
*/
static void pik_set_var(Pik *p, PToken *pId, PNum val, PToken *pOp){
PVar *pVar = p->pVar;
while( pVar ){
if( pik_token_eq(pId,pVar->zName)==0 ) break;
pVar = pVar->pNext;
}
if( pVar==0 ){
char *z;
pVar = malloc( pId->n+1 + sizeof(*pVar) );
if( pVar==0 ){
pik_error(p, 0, 0);
return;
}
pVar->zName = z = (char*)&pVar[1];
memcpy(z, pId->z, pId->n);
z[pId->n] = 0;
pVar->pNext = p->pVar;
pVar->val = pik_value(p, pId->z, pId->n, 0);
p->pVar = pVar;
}
switch( pOp->eCode ){
case T_PLUS: pVar->val += val; break;
case T_STAR: pVar->val *= val; break;
case T_MINUS: pVar->val -= val; break;
case T_SLASH:
if( val==0.0 ){
pik_error(p, pOp, "division by zero");
}else{
pVar->val /= val;
}
break;
default: pVar->val = val; break;
}
p->bLayoutVars = 0; /* Clear the layout setting cache */
}
/*
** Round a PNum into the nearest integer
*/
static int pik_round(PNum v){
if( isnan(v) ) return 0;
if( v < -2147483647 ) return (-2147483647-1);
if( v >= 2147483647 ) return 2147483647;
return (int)v;
}
/*
** Search for the variable named z[0..n-1] in:
**
** * Application defined variables
** * Built-in variables
**
** Return the value of the variable if found. If not found
** return 0.0. Also if pMiss is not NULL, then set it to 1
** if not found.
**
** This routine is a subroutine to pik_get_var(). But it is also
** used by object implementations to look up (possibly overwritten)
** values for built-in variables like "boxwid".
*/
static PNum pik_value(Pik *p, const char *z, int n, int *pMiss){
PVar *pVar;
int first, last, mid, c;
for(pVar=p->pVar; pVar; pVar=pVar->pNext){
if( strncmp(pVar->zName,z,n)==0 && pVar->zName[n]==0 ){
return pVar->val;
}
}
first = 0;
last = count(aBuiltin)-1;
while( first<=last ){
mid = (first+last)/2;
c = strncmp(z,aBuiltin[mid].zName,n);
if( c==0 && aBuiltin[mid].zName[n] ) c = 1;
if( c==0 ) return aBuiltin[mid].val;
if( c>0 ){
first = mid+1;
}else{
last = mid-1;
}
}
if( pMiss ) *pMiss = 1;
return 0.0;
}
static int pik_value_int(Pik *p, const char *z, int n, int *pMiss){
return pik_round(pik_value(p,z,n,pMiss));
}
/*
** Look up a color-name. Unlike other names in this program, the
** color-names are not case sensitive. So "DarkBlue" and "darkblue"
** and "DARKBLUE" all find the same value (139).
**
** If not found, return -99.0. Also post an error if p!=NULL.
**
** Special color names "None" and "Off" return -1.0 without causing
** an error.
*/
static PNum pik_lookup_color(Pik *p, PToken *pId){
int first, last, mid, c = 0;
first = 0;
last = count(aColor)-1;
while( first<=last ){
const char *zClr;
int c1, c2;
unsigned int i;
mid = (first+last)/2;
zClr = aColor[mid].zName;
for(i=0; i<pId->n; i++){
c1 = zClr[i]&0x7f;
if( isupper(c1) ) c1 = tolower(c1);
c2 = pId->z[i]&0x7f;
if( isupper(c2) ) c2 = tolower(c2);
c = c2 - c1;
if( c ) break;
}
if( c==0 && aColor[mid].zName[pId->n] ) c = -1;
if( c==0 ) return (double)aColor[mid].val;
if( c>0 ){
first = mid+1;
}else{
last = mid-1;
}
}
if( p ) pik_error(p, pId, "not a known color name");
return -99.0;
}
/* Get the value of a variable.
**
** Search in order:
**
** * Application defined variables
** * Built-in variables
** * Color names
**
** If no such variable is found, throw an error.
*/
static PNum pik_get_var(Pik *p, PToken *pId){
int miss = 0;
PNum v = pik_value(p, pId->z, pId->n, &miss);
if( miss==0 ) return v;
v = pik_lookup_color(0, pId);
if( v>-90.0 ) return v;
pik_error(p,pId,"no such variable");
return 0.0;
}
/* Convert a T_NTH token (ex: "2nd", "5th"} into a numeric value and
** return that value. Throw an error if the value is too big.
*/
static short int pik_nth_value(Pik *p, PToken *pNth){
int i = atoi(pNth->z);
if( i>1000 ){
pik_error(p, pNth, "value too big - max '1000th'");
i = 1;
}
if( i==0 && pik_token_eq(pNth,"first")==0 ) i = 1;
return (short int)i;
}
/* Search for the NTH object.
**
** If pBasis is not NULL then it should be a [] object. Use the
** sublist of that [] object for the search. If pBasis is not a []
** object, then throw an error.
**
** The pNth token describes the N-th search. The pNth->eCode value
** is one more than the number of items to skip. It is negative
** to search backwards. If pNth->eType==T_ID, then it is the name
** of a class to search for. If pNth->eType==T_LB, then
** search for a [] object. If pNth->eType==T_LAST, then search for
** any type.
**
** Raise an error if the item is not found.
*/
static PObj *pik_find_nth(Pik *p, PObj *pBasis, PToken *pNth){
PList *pList;
int i, n;
const PClass *pClass;
if( pBasis==0 ){
pList = p->list;
}else{
pList = pBasis->pSublist;
}
if( pList==0 ){
pik_error(p, pNth, "no such object");
return 0;
}
if( pNth->eType==T_LAST ){
pClass = 0;
}else if( pNth->eType==T_LB ){
pClass = &sublistClass;
}else{
pClass = pik_find_class(pNth);
if( pClass==0 ){
pik_error(0, pNth, "no such object type");
return 0;
}
}
n = pNth->eCode;
if( n<0 ){
for(i=pList->n-1; i>=0; i--){
PObj *pObj = pList->a[i];
if( pClass && pObj->type!=pClass ) continue;
n++;
if( n==0 ){ return pObj; }
}
}else{
for(i=0; i<pList->n; i++){
PObj *pObj = pList->a[i];
if( pClass && pObj->type!=pClass ) continue;
n--;
if( n==0 ){ return pObj; }
}
}
pik_error(p, pNth, "no such object");
return 0;
}
/* Search for an object by name.
**
** Search in pBasis->pSublist if pBasis is not NULL. If pBasis is NULL
** then search in p->list.
*/
static PObj *pik_find_byname(Pik *p, PObj *pBasis, PToken *pName){
PList *pList;
int i, j;
if( pBasis==0 ){
pList = p->list;
}else{
pList = pBasis->pSublist;
}
if( pList==0 ){
pik_error(p, pName, "no such object");
return 0;
}
/* First look explicitly tagged objects */
for(i=pList->n-1; i>=0; i--){
PObj *pObj = pList->a[i];
if( pObj->zName && pik_token_eq(pName,pObj->zName)==0 ){
p->lastRef = pObj;
return pObj;
}
}
/* If not found, do a second pass looking for any object containing
** text which exactly matches pName */
for(i=pList->n-1; i>=0; i--){
PObj *pObj = pList->a[i];
for(j=0; j<pObj->nTxt; j++){
if( pObj->aTxt[j].n==pName->n+2
&& memcmp(pObj->aTxt[j].z+1,pName->z,pName->n)==0 ){
p->lastRef = pObj;
return pObj;
}
}
}
pik_error(p, pName, "no such object");
return 0;
}
/* Change most of the settings for the current object to be the
** same as the pOther object, or the most recent object of the same
** type if pOther is NULL.
*/
static void pik_same(Pik *p, PObj *pOther, PToken *pErrTok){
PObj *pObj = p->cur;
if( p->nErr ) return;
if( pOther==0 ){
int i;
for(i=(p->list ? p->list->n : 0)-1; i>=0; i--){
pOther = p->list->a[i];
if( pOther->type==pObj->type ) break;
}
if( i<0 ){
pik_error(p, pErrTok, "no prior objects of the same type");
return;
}
}
if( pOther->nPath && pObj->type->isLine ){
PNum dx, dy;
int i;
dx = p->aTPath[0].x - pOther->aPath[0].x;
dy = p->aTPath[0].y - pOther->aPath[0].y;
for(i=1; i<pOther->nPath; i++){
p->aTPath[i].x = pOther->aPath[i].x + dx;
p->aTPath[i].y = pOther->aPath[i].y + dy;
}
p->nTPath = pOther->nPath;
p->mTPath = 3;
p->samePath = 1;
}
if( !pObj->type->isLine ){
pObj->w = pOther->w;
pObj->h = pOther->h;
}
pObj->rad = pOther->rad;
pObj->sw = pOther->sw;
pObj->dashed = pOther->dashed;
pObj->dotted = pOther->dotted;
pObj->fill = pOther->fill;
pObj->color = pOther->color;
pObj->cw = pOther->cw;
pObj->larrow = pOther->larrow;
pObj->rarrow = pOther->rarrow;
pObj->bClose = pOther->bClose;
pObj->bChop = pOther->bChop;
pObj->iLayer = pOther->iLayer;
}
/* Return a "Place" associated with object pObj. If pEdge is NULL
** return the center of the object. Otherwise, return the corner
** described by pEdge.
*/
static PPoint pik_place_of_elem(Pik *p, PObj *pObj, PToken *pEdge){
PPoint pt = cZeroPoint;
const PClass *pClass;
if( pObj==0 ) return pt;
if( pEdge==0 ){
return pObj->ptAt;
}
pClass = pObj->type;
if( pEdge->eType==T_EDGEPT || (pEdge->eEdge>0 && pEdge->eEdge<CP_END) ){
pt = pClass->xOffset(p, pObj, pEdge->eEdge);
pt.x += pObj->ptAt.x;
pt.y += pObj->ptAt.y;
return pt;
}
if( pEdge->eType==T_START ){
return pObj->ptEnter;
}else{
return pObj->ptExit;
}
}
/* Do a linear interpolation of two positions.
*/
static PPoint pik_position_between(PNum x, PPoint p1, PPoint p2){
PPoint out;
out.x = p2.x*x + p1.x*(1.0 - x);
out.y = p2.y*x + p1.y*(1.0 - x);
return out;
}
/* Compute the position that is dist away from pt at an heading angle of r
**
** The angle is a compass heading in degrees. North is 0 (or 360).
** East is 90. South is 180. West is 270. And so forth.
*/
static PPoint pik_position_at_angle(PNum dist, PNum r, PPoint pt){
r *= 0.017453292519943295769; /* degrees to radians */
pt.x += dist*sin(r);
pt.y += dist*cos(r);
return pt;
}
/* Compute the position that is dist away at a compass point
*/
static PPoint pik_position_at_hdg(PNum dist, PToken *pD, PPoint pt){
return pik_position_at_angle(dist, pik_hdg_angle[pD->eEdge], pt);
}
/* Return the coordinates for the n-th vertex of a line.
*/
static PPoint pik_nth_vertex(Pik *p, PToken *pNth, PToken *pErr, PObj *pObj){
static const PPoint zero = {0, 0};
int n;
if( p->nErr || pObj==0 ) return p->aTPath[0];
if( !pObj->type->isLine ){
pik_error(p, pErr, "object is not a line");
return zero;
}
n = atoi(pNth->z);
if( n<1 || n>pObj->nPath ){
pik_error(p, pNth, "no such vertex");
return zero;
}
return pObj->aPath[n-1];
}
/* Return the value of a property of an object.
*/
static PNum pik_property_of(PObj *pObj, PToken *pProp){
PNum v = 0.0;
if( pObj ){
switch( pProp->eType ){
case T_HEIGHT: v = pObj->h; break;
case T_WIDTH: v = pObj->w; break;
case T_RADIUS: v = pObj->rad; break;
case T_DIAMETER: v = pObj->rad*2.0; break;
case T_THICKNESS: v = pObj->sw; break;
case T_DASHED: v = pObj->dashed; break;
case T_DOTTED: v = pObj->dotted; break;
case T_FILL: v = pObj->fill; break;
case T_COLOR: v = pObj->color; break;
case T_X: v = pObj->ptAt.x; break;
case T_Y: v = pObj->ptAt.y; break;
case T_TOP: v = pObj->bbox.ne.y; break;
case T_BOTTOM: v = pObj->bbox.sw.y; break;
case T_LEFT: v = pObj->bbox.sw.x; break;
case T_RIGHT: v = pObj->bbox.ne.x; break;
}
}
return v;
}
/* Compute one of the built-in functions
*/
static PNum pik_func(Pik *p, PToken *pFunc, PNum x, PNum y){
PNum v = 0.0;
switch( pFunc->eCode ){
case FN_ABS: v = x<0.0 ? -x : x; break;
case FN_COS: v = cos(x); break;
case FN_INT: v = rint(x); break;
case FN_SIN: v = sin(x); break;
case FN_SQRT:
if( x<0.0 ){
pik_error(p, pFunc, "sqrt of negative value");
v = 0.0;
}else{
v = sqrt(x);
}
break;
case FN_MAX: v = x>y ? x : y; break;
case FN_MIN: v = x<y ? x : y; break;
default: v = 0.0;
}
return v;
}
/* Attach a name to an object
*/
static void pik_elem_setname(Pik *p, PObj *pObj, PToken *pName){
if( pObj==0 ) return;
if( pName==0 ) return;
free(pObj->zName);
pObj->zName = malloc(pName->n+1);
if( pObj->zName==0 ){
pik_error(p,0,0);
}else{
memcpy(pObj->zName,pName->z,pName->n);
pObj->zName[pName->n] = 0;
}
return;
}
/*
** Search for object located at *pCenter that has an xChop method and
** that does not enclose point pOther.
**
** Return a pointer to the object, or NULL if not found.
*/
static PObj *pik_find_chopper(PList *pList, PPoint *pCenter, PPoint *pOther){
int i;
if( pList==0 ) return 0;
for(i=pList->n-1; i>=0; i--){
PObj *pObj = pList->a[i];
if( pObj->type->xChop!=0
&& pObj->ptAt.x==pCenter->x
&& pObj->ptAt.y==pCenter->y
&& !pik_bbox_contains_point(&pObj->bbox, pOther)
){
return pObj;
}else if( pObj->pSublist ){
pObj = pik_find_chopper(pObj->pSublist,pCenter,pOther);
if( pObj ) return pObj;
}
}
return 0;
}
/*
** There is a line traveling from pFrom to pTo.
**
** If pObj is not null and is a choppable object, then chop at
** the boundary of pObj - where the line crosses the boundary
** of pObj.
**
** If pObj is NULL or has no xChop method, then search for some
** other object centered at pTo that is choppable and use it
** instead.
*/
static void pik_autochop(Pik *p, PPoint *pFrom, PPoint *pTo, PObj *pObj){
if( pObj==0 || pObj->type->xChop==0 ){
pObj = pik_find_chopper(p->list, pTo, pFrom);
}
if( pObj ){
*pTo = pObj->type->xChop(p, pObj, pFrom);
}
}
/* This routine runs after all attributes have been received
** on an object.
*/
static void pik_after_adding_attributes(Pik *p, PObj *pObj){
int i;
PPoint ofst;
PNum dx, dy;
if( p->nErr ) return;
/* Position block objects */
if( pObj->type->isLine==0 ){
/* A height or width less than or equal to zero means "autofit".
** Change the height or width to be big enough to contain the text,
*/
if( pObj->h<=0.0 ){
if( pObj->nTxt==0 ){
pObj->h = 0.0;
}else if( pObj->w<=0.0 ){
pik_size_to_fit(p, &pObj->errTok, 3);
}else{
pik_size_to_fit(p, &pObj->errTok, 2);
}
}
if( pObj->w<=0.0 ){
if( pObj->nTxt==0 ){
pObj->w = 0.0;
}else{
pik_size_to_fit(p, &pObj->errTok, 1);
}
}
ofst = pik_elem_offset(p, pObj, pObj->eWith);
dx = (pObj->with.x - ofst.x) - pObj->ptAt.x;
dy = (pObj->with.y - ofst.y) - pObj->ptAt.y;
if( dx!=0 || dy!=0 ){
pik_elem_move(pObj, dx, dy);
}
}
/* For a line object with no movement specified, a single movement
** of the default length in the current direction
*/
if( pObj->type->isLine && p->nTPath<2 ){
pik_next_rpath(p, 0);
assert( p->nTPath==2 );
switch( pObj->inDir ){
default: p->aTPath[1].x += pObj->w; break;
case DIR_DOWN: p->aTPath[1].y -= pObj->h; break;
case DIR_LEFT: p->aTPath[1].x -= pObj->w; break;
case DIR_UP: p->aTPath[1].y += pObj->h; break;
}
if( pObj->type->xInit==arcInit ){
pObj->outDir = (pObj->inDir + (pObj->cw ? 1 : 3))%4;
p->eDir = (unsigned char)pObj->outDir;
switch( pObj->outDir ){
default: p->aTPath[1].x += pObj->w; break;
case DIR_DOWN: p->aTPath[1].y -= pObj->h; break;
case DIR_LEFT: p->aTPath[1].x -= pObj->w; break;
case DIR_UP: p->aTPath[1].y += pObj->h; break;
}
}
}
/* Initialize the bounding box prior to running xCheck */
pik_bbox_init(&pObj->bbox);
/* Run object-specific code */
if( pObj->type->xCheck!=0 ){
pObj->type->xCheck(p,pObj);
if( p->nErr ) return;
}
/* Compute final bounding box, entry and exit points, center
** point (ptAt) and path for the object
*/
if( pObj->type->isLine ){
pObj->aPath = malloc( sizeof(PPoint)*p->nTPath );
if( pObj->aPath==0 ){
pik_error(p, 0, 0);
return;
}else{
pObj->nPath = p->nTPath;
for(i=0; i<p->nTPath; i++){
pObj->aPath[i] = p->aTPath[i];
}
}
/* "chop" processing:
** If the line goes to the center of an object with an
** xChop method, then use the xChop method to trim the line.
*/
if( pObj->bChop && pObj->nPath>=2 ){
int n = pObj->nPath;
pik_autochop(p, &pObj->aPath[n-2], &pObj->aPath[n-1], pObj->pTo);
pik_autochop(p, &pObj->aPath[1], &pObj->aPath[0], pObj->pFrom);
}
pObj->ptEnter = pObj->aPath[0];
pObj->ptExit = pObj->aPath[pObj->nPath-1];
/* Compute the center of the line based on the bounding box over
** the vertexes. This is a difference from PIC. In Pikchr, the
** center of a line is the center of its bounding box. In PIC, the
** center of a line is halfway between its .start and .end. For
** straight lines, this is the same point, but for multi-segment
** lines the result is usually diferent */
for(i=0; i<pObj->nPath; i++){
pik_bbox_add_xy(&pObj->bbox, pObj->aPath[i].x, pObj->aPath[i].y);
}
pObj->ptAt.x = (pObj->bbox.ne.x + pObj->bbox.sw.x)/2.0;
pObj->ptAt.y = (pObj->bbox.ne.y + pObj->bbox.sw.y)/2.0;
/* Reset the width and height of the object to be the width and height
** of the bounding box over vertexes */
pObj->w = pObj->bbox.ne.x - pObj->bbox.sw.x;
pObj->h = pObj->bbox.ne.y - pObj->bbox.sw.y;
/* If this is a polygon (if it has the "close" attribute), then
** adjust the exit point */
if( pObj->bClose ){
/* For "closed" lines, the .end is one of the .e, .s, .w, or .n
** points of the bounding box, as with block objects. */
pik_elem_set_exit(pObj, pObj->inDir);
}
}else{
PNum w2 = pObj->w/2.0;
PNum h2 = pObj->h/2.0;
pObj->ptEnter = pObj->ptAt;
pObj->ptExit = pObj->ptAt;
switch( pObj->inDir ){
default: pObj->ptEnter.x -= w2; break;
case DIR_LEFT: pObj->ptEnter.x += w2; break;
case DIR_UP: pObj->ptEnter.y -= h2; break;
case DIR_DOWN: pObj->ptEnter.y += h2; break;
}
switch( pObj->outDir ){
default: pObj->ptExit.x += w2; break;
case DIR_LEFT: pObj->ptExit.x -= w2; break;
case DIR_UP: pObj->ptExit.y += h2; break;
case DIR_DOWN: pObj->ptExit.y -= h2; break;
}
pik_bbox_add_xy(&pObj->bbox, pObj->ptAt.x - w2, pObj->ptAt.y - h2);
pik_bbox_add_xy(&pObj->bbox, pObj->ptAt.x + w2, pObj->ptAt.y + h2);
}
p->eDir = (unsigned char)pObj->outDir;
}
/* Show basic information about each object as a comment in the
** generated HTML. Used for testing and debugging. Activated
** by the (undocumented) "debug = 1;"
** command.
*/
static void pik_elem_render(Pik *p, PObj *pObj){
char *zDir;
if( pObj==0 ) return;
pik_append(p,"<!-- ", -1);
if( pObj->zName ){
pik_append_text(p, pObj->zName, -1, 0);
pik_append(p, ": ", 2);
}
pik_append_text(p, pObj->type->zName, -1, 0);
if( pObj->nTxt ){
pik_append(p, " \"", 2);
pik_append_text(p, pObj->aTxt[0].z+1, pObj->aTxt[0].n-2, 1);
pik_append(p, "\"", 1);
}
pik_append_num(p, " w=", pObj->w);
pik_append_num(p, " h=", pObj->h);
pik_append_point(p, " center=", &pObj->ptAt);
pik_append_point(p, " enter=", &pObj->ptEnter);
switch( pObj->outDir ){
default: zDir = " right"; break;
case DIR_LEFT: zDir = " left"; break;
case DIR_UP: zDir = " up"; break;
case DIR_DOWN: zDir = " down"; break;
}
pik_append_point(p, " exit=", &pObj->ptExit);
pik_append(p, zDir, -1);
pik_append(p, " -->\n", -1);
}
/* Render a list of objects
*/
void pik_elist_render(Pik *p, PList *pList){
int i;
int iNextLayer = 0;
int iThisLayer;
int bMoreToDo;
int miss = 0;
int mDebug = pik_value_int(p, "debug", 5, 0);
PNum colorLabel;
do{
bMoreToDo = 0;
iThisLayer = iNextLayer;
iNextLayer = 0x7fffffff;
for(i=0; i<pList->n; i++){
PObj *pObj = pList->a[i];
void (*xRender)(Pik*,PObj*);
if( pObj->iLayer>iThisLayer ){
if( pObj->iLayer<iNextLayer ) iNextLayer = pObj->iLayer;
bMoreToDo = 1;
continue; /* Defer until another round */
}else if( pObj->iLayer<iThisLayer ){
continue;
}
if( mDebug & 1 ) pik_elem_render(p, pObj);
xRender = pObj->type->xRender;
if( xRender ){
xRender(p, pObj);
}
if( pObj->pSublist ){
pik_elist_render(p, pObj->pSublist);
}
}
}while( bMoreToDo );
/* If the color_debug_label value is defined, then go through
** and paint a dot at every label location */
colorLabel = pik_value(p, "debug_label_color", 17, &miss);
if( miss==0 && colorLabel>=0.0 ){
PObj dot;
memset(&dot, 0, sizeof(dot));
dot.type = &noopClass;
dot.rad = 0.015;
dot.sw = 0.015;
dot.fill = colorLabel;
dot.color = colorLabel;
dot.nTxt = 1;
dot.aTxt[0].eCode = TP_ABOVE;
for(i=0; i<pList->n; i++){
PObj *pObj = pList->a[i];
if( pObj->zName==0 ) continue;
dot.ptAt = pObj->ptAt;
dot.aTxt[0].z = pObj->zName;
dot.aTxt[0].n = (int)strlen(pObj->zName);
dotRender(p, &dot);
}
}
}
/* Add all objects of the list pList to the bounding box
*/
static void pik_bbox_add_elist(Pik *p, PList *pList, PNum wArrow){
int i;
for(i=0; i<pList->n; i++){
PObj *pObj = pList->a[i];
if( pObj->sw>=0.0 ) pik_bbox_addbox(&p->bbox, &pObj->bbox);
pik_append_txt(p, pObj, &p->bbox);
if( pObj->pSublist ) pik_bbox_add_elist(p, pObj->pSublist, wArrow);
/* Expand the bounding box to account for arrowheads on lines */
if( pObj->type->isLine && pObj->nPath>0 ){
if( pObj->larrow ){
pik_bbox_addellipse(&p->bbox, pObj->aPath[0].x, pObj->aPath[0].y,
wArrow, wArrow);
}
if( pObj->rarrow ){
int j = pObj->nPath-1;
pik_bbox_addellipse(&p->bbox, pObj->aPath[j].x, pObj->aPath[j].y,
wArrow, wArrow);
}
}
}
}
/* Recompute key layout parameters from variables. */
static void pik_compute_layout_settings(Pik *p){
PNum thickness; /* Line thickness */
PNum wArrow; /* Width of arrowheads */
/* Set up rendering parameters */
if( p->bLayoutVars ) return;
thickness = pik_value(p,"thickness",9,0);
if( thickness<=0.01 ) thickness = 0.01;
wArrow = 0.5*pik_value(p,"arrowwid",8,0);
p->wArrow = wArrow/thickness;
p->hArrow = pik_value(p,"arrowht",7,0)/thickness;
p->fontScale = pik_value(p,"fontscale",9,0);
if( p->fontScale<=0.0 ) p->fontScale = 1.0;
p->rScale = 144.0;
p->charWidth = pik_value(p,"charwid",7,0)*p->fontScale;
p->charHeight = pik_value(p,"charht",6,0)*p->fontScale;
p->bLayoutVars = 1;
}
/* Render a list of objects. Write the SVG into p->zOut.
** Delete the input object_list before returnning.
*/
static void pik_render(Pik *p, PList *pList){
if( pList==0 ) return;
if( p->nErr==0 ){
PNum thickness; /* Stroke width */
PNum margin; /* Extra bounding box margin */
PNum w, h; /* Drawing width and height */
PNum wArrow;
PNum pikScale; /* Value of the "scale" variable */
int miss = 0;
/* Set up rendering parameters */
pik_compute_layout_settings(p);
thickness = pik_value(p,"thickness",9,0);
if( thickness<=0.01 ) thickness = 0.01;
margin = pik_value(p,"margin",6,0);
margin += thickness;
wArrow = p->wArrow*thickness;
miss = 0;
p->fgcolor = pik_value_int(p,"fgcolor",7,&miss);
if( miss ){
PToken t;
t.z = "fgcolor";
t.n = 7;
p->fgcolor = pik_round(pik_lookup_color(0, &t));
}
miss = 0;
p->bgcolor = pik_value_int(p,"bgcolor",7,&miss);
if( miss ){
PToken t;
t.z = "bgcolor";
t.n = 7;
p->bgcolor = pik_round(pik_lookup_color(0, &t));
}
/* Compute a bounding box over all objects so that we can know
** how big to declare the SVG canvas */
pik_bbox_init(&p->bbox);
pik_bbox_add_elist(p, pList, wArrow);
/* Expand the bounding box slightly to account for line thickness
** and the optional "margin = EXPR" setting. */
p->bbox.ne.x += margin + pik_value(p,"rightmargin",11,0);
p->bbox.ne.y += margin + pik_value(p,"topmargin",9,0);
p->bbox.sw.x -= margin + pik_value(p,"leftmargin",10,0);
p->bbox.sw.y -= margin + pik_value(p,"bottommargin",12,0);
/* Output the SVG */
pik_append(p, "<svg xmlns='http://www.w3.org/2000/svg'",-1);
if( p->zClass ){
pik_append(p, " class=\"", -1);
pik_append(p, p->zClass, -1);
pik_append(p, "\"", 1);
}
w = p->bbox.ne.x - p->bbox.sw.x;
h = p->bbox.ne.y - p->bbox.sw.y;
p->wSVG = pik_round(p->rScale*w);
p->hSVG = pik_round(p->rScale*h);
pikScale = pik_value(p,"scale",5,0);
if( pikScale>=0.001 && pikScale<=1000.0
&& (pikScale<0.99 || pikScale>1.01)
){
p->wSVG = pik_round(p->wSVG*pikScale);
p->hSVG = pik_round(p->hSVG*pikScale);
pik_append_num(p, " width=\"", p->wSVG);
pik_append_num(p, "\" height=\"", p->hSVG);
pik_append(p, "\"", 1);
}
pik_append_dis(p, " viewBox=\"0 0 ",w,"");
pik_append_dis(p, " ",h,"\">\n");
pik_elist_render(p, pList);
pik_append(p,"</svg>\n", -1);
}else{
p->wSVG = -1;
p->hSVG = -1;
}
pik_elist_free(p, pList);
}
/*
** An array of this structure defines a list of keywords.
*/
typedef struct PikWord {
char *zWord; /* Text of the keyword */
unsigned char nChar; /* Length of keyword text in bytes */
unsigned char eType; /* Token code */
unsigned char eCode; /* Extra code for the token */
unsigned char eEdge; /* CP_* code for corner/edge keywords */
} PikWord;
/*
** Keywords
*/
static const PikWord pik_keywords[] = {
{ "above", 5, T_ABOVE, 0, 0 },
{ "abs", 3, T_FUNC1, FN_ABS, 0 },
{ "aligned", 7, T_ALIGNED, 0, 0 },
{ "and", 3, T_AND, 0, 0 },
{ "as", 2, T_AS, 0, 0 },
{ "assert", 6, T_ASSERT, 0, 0 },
{ "at", 2, T_AT, 0, 0 },
{ "behind", 6, T_BEHIND, 0, 0 },
{ "below", 5, T_BELOW, 0, 0 },
{ "between", 7, T_BETWEEN, 0, 0 },
{ "big", 3, T_BIG, 0, 0 },
{ "bold", 4, T_BOLD, 0, 0 },
{ "bot", 3, T_EDGEPT, 0, CP_S },
{ "bottom", 6, T_BOTTOM, 0, CP_S },
{ "c", 1, T_EDGEPT, 0, CP_C },
{ "ccw", 3, T_CCW, 0, 0 },
{ "center", 6, T_CENTER, 0, CP_C },
{ "chop", 4, T_CHOP, 0, 0 },
{ "close", 5, T_CLOSE, 0, 0 },
{ "color", 5, T_COLOR, 0, 0 },
{ "cos", 3, T_FUNC1, FN_COS, 0 },
{ "cw", 2, T_CW, 0, 0 },
{ "dashed", 6, T_DASHED, 0, 0 },
{ "define", 6, T_DEFINE, 0, 0 },
{ "diameter", 8, T_DIAMETER, 0, 0 },
{ "dist", 4, T_DIST, 0, 0 },
{ "dotted", 6, T_DOTTED, 0, 0 },
{ "down", 4, T_DOWN, DIR_DOWN, 0 },
{ "e", 1, T_EDGEPT, 0, CP_E },
{ "east", 4, T_EDGEPT, 0, CP_E },
{ "end", 3, T_END, 0, CP_END },
{ "even", 4, T_EVEN, 0, 0 },
{ "fill", 4, T_FILL, 0, 0 },
{ "first", 5, T_NTH, 0, 0 },
{ "fit", 3, T_FIT, 0, 0 },
{ "from", 4, T_FROM, 0, 0 },
{ "go", 2, T_GO, 0, 0 },
{ "heading", 7, T_HEADING, 0, 0 },
{ "height", 6, T_HEIGHT, 0, 0 },
{ "ht", 2, T_HEIGHT, 0, 0 },
{ "in", 2, T_IN, 0, 0 },
{ "int", 3, T_FUNC1, FN_INT, 0 },
{ "invis", 5, T_INVIS, 0, 0 },
{ "invisible", 9, T_INVIS, 0, 0 },
{ "italic", 6, T_ITALIC, 0, 0 },
{ "last", 4, T_LAST, 0, 0 },
{ "left", 4, T_LEFT, DIR_LEFT, CP_W },
{ "ljust", 5, T_LJUST, 0, 0 },
{ "max", 3, T_FUNC2, FN_MAX, 0 },
{ "min", 3, T_FUNC2, FN_MIN, 0 },
{ "mono", 4, T_MONO, 0, 0 },
{ "monospace", 9, T_MONO, 0, 0 },
{ "n", 1, T_EDGEPT, 0, CP_N },
{ "ne", 2, T_EDGEPT, 0, CP_NE },
{ "north", 5, T_EDGEPT, 0, CP_N },
{ "nw", 2, T_EDGEPT, 0, CP_NW },
{ "of", 2, T_OF, 0, 0 },
{ "previous", 8, T_LAST, 0, 0, },
{ "print", 5, T_PRINT, 0, 0 },
{ "rad", 3, T_RADIUS, 0, 0 },
{ "radius", 6, T_RADIUS, 0, 0 },
{ "right", 5, T_RIGHT, DIR_RIGHT, CP_E },
{ "rjust", 5, T_RJUST, 0, 0 },
{ "s", 1, T_EDGEPT, 0, CP_S },
{ "same", 4, T_SAME, 0, 0 },
{ "se", 2, T_EDGEPT, 0, CP_SE },
{ "sin", 3, T_FUNC1, FN_SIN, 0 },
{ "small", 5, T_SMALL, 0, 0 },
{ "solid", 5, T_SOLID, 0, 0 },
{ "south", 5, T_EDGEPT, 0, CP_S },
{ "sqrt", 4, T_FUNC1, FN_SQRT, 0 },
{ "start", 5, T_START, 0, CP_START },
{ "sw", 2, T_EDGEPT, 0, CP_SW },
{ "t", 1, T_TOP, 0, CP_N },
{ "the", 3, T_THE, 0, 0 },
{ "then", 4, T_THEN, 0, 0 },
{ "thick", 5, T_THICK, 0, 0 },
{ "thickness", 9, T_THICKNESS, 0, 0 },
{ "thin", 4, T_THIN, 0, 0 },
{ "this", 4, T_THIS, 0, 0 },
{ "to", 2, T_TO, 0, 0 },
{ "top", 3, T_TOP, 0, CP_N },
{ "until", 5, T_UNTIL, 0, 0 },
{ "up", 2, T_UP, DIR_UP, 0 },
{ "vertex", 6, T_VERTEX, 0, 0 },
{ "w", 1, T_EDGEPT, 0, CP_W },
{ "way", 3, T_WAY, 0, 0 },
{ "west", 4, T_EDGEPT, 0, CP_W },
{ "wid", 3, T_WIDTH, 0, 0 },
{ "width", 5, T_WIDTH, 0, 0 },
{ "with", 4, T_WITH, 0, 0 },
{ "x", 1, T_X, 0, 0 },
{ "y", 1, T_Y, 0, 0 },
};
/*
** Search a PikWordlist for the given keyword. Return a pointer to the
** keyword entry found. Or return 0 if not found.
*/
static const PikWord *pik_find_word(
const char *zIn, /* Word to search for */
int n, /* Length of zIn */
const PikWord *aList, /* List to search */
int nList /* Number of entries in aList */
){
int first = 0;
int last = nList-1;
while( first<=last ){
int mid = (first + last)/2;
int sz = aList[mid].nChar;
int c = strncmp(zIn, aList[mid].zWord, sz<n ? sz : n);
if( c==0 ){
c = n - sz;
if( c==0 ) return &aList[mid];
}
if( c<0 ){
last = mid-1;
}else{
first = mid+1;
}
}
return 0;
}
/*
** Set a symbolic debugger breakpoint on this routine to receive a
** breakpoint when the "#breakpoint" token is parsed.
*/
static void pik_breakpoint(const unsigned char *z){
/* Prevent C compilers from optimizing out this routine. */
if( z[2]=='X' ) exit(1);
}
/*
** Return the length of next token. The token starts on
** the pToken->z character. Fill in other fields of the
** pToken object as appropriate.
*/
static int pik_token_length(PToken *pToken, int bAllowCodeBlock){
const unsigned char *z = (const unsigned char*)pToken->z;
int i;
unsigned char c, c2;
switch( z[0] ){
case '\\': {
pToken->eType = T_WHITESPACE;
for(i=1; z[i]=='\r' || z[i]==' ' || z[i]=='\t'; i++){}
if( z[i]=='\n' ) return i+1;
pToken->eType = T_ERROR;
return 1;
}
case ';':
case '\n': {
pToken->eType = T_EOL;
return 1;
}
case '"': {
for(i=1; (c = z[i])!=0; i++){
if( c=='\\' ){
if( z[i+1]==0 ) break;
i++;
continue;
}
if( c=='"' ){
pToken->eType = T_STRING;
return i+1;
}
}
pToken->eType = T_ERROR;
return i;
}
case ' ':
case '\t':
case '\f':
case '\r': {
for(i=1; (c = z[i])==' ' || c=='\t' || c=='\r' || c=='\t'; i++){}
pToken->eType = T_WHITESPACE;
return i;
}
case '#': {
for(i=1; (c = z[i])!=0 && c!='\n'; i++){}
pToken->eType = T_WHITESPACE;
/* If the comment is "#breakpoint" then invoke the pik_breakpoint()
** routine. The pik_breakpoint() routie is a no-op that serves as
** a convenient place to set a gdb breakpoint when debugging. */
if( strncmp((const char*)z,"#breakpoint",11)==0 ) pik_breakpoint(z);
return i;
}
case '/': {
if( z[1]=='*' ){
for(i=2; z[i]!=0 && (z[i]!='*' || z[i+1]!='/'); i++){}
if( z[i]=='*' ){
pToken->eType = T_WHITESPACE;
return i+2;
}else{
pToken->eType = T_ERROR;
return i;
}
}else if( z[1]=='/' ){
for(i=2; z[i]!=0 && z[i]!='\n'; i++){}
pToken->eType = T_WHITESPACE;
return i;
}else if( z[1]=='=' ){
pToken->eType = T_ASSIGN;
pToken->eCode = T_SLASH;
return 2;
}else{
pToken->eType = T_SLASH;
return 1;
}
}
case '+': {
if( z[1]=='=' ){
pToken->eType = T_ASSIGN;
pToken->eCode = T_PLUS;
return 2;
}
pToken->eType = T_PLUS;
return 1;
}
case '*': {
if( z[1]=='=' ){
pToken->eType = T_ASSIGN;
pToken->eCode = T_STAR;
return 2;
}
pToken->eType = T_STAR;
return 1;
}
case '%': { pToken->eType = T_PERCENT; return 1; }
case '(': { pToken->eType = T_LP; return 1; }
case ')': { pToken->eType = T_RP; return 1; }
case '[': { pToken->eType = T_LB; return 1; }
case ']': { pToken->eType = T_RB; return 1; }
case ',': { pToken->eType = T_COMMA; return 1; }
case ':': { pToken->eType = T_COLON; return 1; }
case '>': { pToken->eType = T_GT; return 1; }
case '=': {
if( z[1]=='=' ){
pToken->eType = T_EQ;
return 2;
}
pToken->eType = T_ASSIGN;
pToken->eCode = T_ASSIGN;
return 1;
}
case '-': {
if( z[1]=='>' ){
pToken->eType = T_RARROW;
return 2;
}else if( z[1]=='=' ){
pToken->eType = T_ASSIGN;
pToken->eCode = T_MINUS;
return 2;
}else{
pToken->eType = T_MINUS;
return 1;
}
}
case '<': {
if( z[1]=='-' ){
if( z[2]=='>' ){
pToken->eType = T_LRARROW;
return 3;
}else{
pToken->eType = T_LARROW;
return 2;
}
}else{
pToken->eType = T_LT;
return 1;
}
}
case 0xe2: {
if( z[1]==0x86 ){
if( z[2]==0x90 ){
pToken->eType = T_LARROW; /* <- */
return 3;
}
if( z[2]==0x92 ){
pToken->eType = T_RARROW; /* -> */
return 3;
}
if( z[2]==0x94 ){
pToken->eType = T_LRARROW; /* <-> */
return 3;
}
}
pToken->eType = T_ERROR;
return 1;
}
case '{': {
int len, depth;
i = 1;
if( bAllowCodeBlock ){
depth = 1;
while( z[i] && depth>0 ){
PToken x;
x.z = (char*)(z+i);
len = pik_token_length(&x, 0);
if( len==1 ){
if( z[i]=='{' ) depth++;
if( z[i]=='}' ) depth--;
}
i += len;
}
}else{
depth = 0;
}
if( depth ){
pToken->eType = T_ERROR;
return 1;
}
pToken->eType = T_CODEBLOCK;
return i;
}
case '&': {
static const struct {
int nByte; /* Number of bytes in zEntity */
int eCode; /* Corresponding token code */
const char *zEntity; /* Name of the HTML entity */
} aEntity[] = {
/* 123456789 1234567 */
{ 6, T_RARROW, "→" }, /* Same as -> */
{ 12, T_RARROW, "→" }, /* Same as -> */
{ 6, T_LARROW, "←" }, /* Same as <- */
{ 11, T_LARROW, "←" }, /* Same as <- */
{ 16, T_LRARROW, "↔" }, /* Same as <-> */
};
unsigned int i;
for(i=0; i<sizeof(aEntity)/sizeof(aEntity[0]); i++){
if( strncmp((const char*)z,aEntity[i].zEntity,aEntity[i].nByte)==0 ){
pToken->eType = aEntity[i].eCode;
return aEntity[i].nByte;
}
}
pToken->eType = T_ERROR;
return 1;
}
default: {
c = z[0];
if( c=='.' ){
unsigned char c1 = z[1];
if( islower(c1) ){
const PikWord *pFound;
for(i=2; (c = z[i])>='a' && c<='z'; i++){}
pFound = pik_find_word((const char*)z+1, i-1,
pik_keywords, count(pik_keywords));
if( pFound && (pFound->eEdge>0 ||
pFound->eType==T_EDGEPT ||
pFound->eType==T_START ||
pFound->eType==T_END )
){
/* Dot followed by something that is a 2-D place value */
pToken->eType = T_DOT_E;
}else if( pFound && (pFound->eType==T_X || pFound->eType==T_Y) ){
/* Dot followed by "x" or "y" */
pToken->eType = T_DOT_XY;
}else{
/* Any other "dot" */
pToken->eType = T_DOT_L;
}
return 1;
}else if( isdigit(c1) ){
i = 0;
/* no-op. Fall through to number handling */
}else if( isupper(c1) ){
for(i=2; (c = z[i])!=0 && (isalnum(c) || c=='_'); i++){}
pToken->eType = T_DOT_U;
return 1;
}else{
pToken->eType = T_ERROR;
return 1;
}
}
if( (c>='0' && c<='9') || c=='.' ){
int nDigit;
int isInt = 1;
if( c!='.' ){
nDigit = 1;
for(i=1; (c = z[i])>='0' && c<='9'; i++){ nDigit++; }
if( i==1 && (c=='x' || c=='X') ){
for(i=2; (c = z[i])!=0 && isxdigit(c); i++){}
pToken->eType = T_NUMBER;
return i;
}
}else{
isInt = 0;
nDigit = 0;
i = 0;
}
if( c=='.' ){
isInt = 0;
for(i++; (c = z[i])>='0' && c<='9'; i++){ nDigit++; }
}
if( nDigit==0 ){
pToken->eType = T_ERROR;
return i;
}
if( c=='e' || c=='E' ){
int iBefore = i;
i++;
c2 = z[i];
if( c2=='+' || c2=='-' ){
i++;
c2 = z[i];
}
if( c2<'0' || c>'9' ){
/* This is not an exp */
i = iBefore;
}else{
i++;
isInt = 0;
while( (c = z[i])>='0' && c<='9' ){ i++; }
}
}
c2 = c ? z[i+1] : 0;
if( isInt ){
if( (c=='t' && c2=='h')
|| (c=='r' && c2=='d')
|| (c=='n' && c2=='d')
|| (c=='s' && c2=='t')
){
pToken->eType = T_NTH;
return i+2;
}
}
if( (c=='i' && c2=='n')
|| (c=='c' && c2=='m')
|| (c=='m' && c2=='m')
|| (c=='p' && c2=='t')
|| (c=='p' && c2=='x')
|| (c=='p' && c2=='c')
){
i += 2;
}
pToken->eType = T_NUMBER;
return i;
}else if( islower(c) ){
const PikWord *pFound;
for(i=1; (c = z[i])!=0 && (isalnum(c) || c=='_'); i++){}
pFound = pik_find_word((const char*)z, i,
pik_keywords, count(pik_keywords));
if( pFound ){
pToken->eType = pFound->eType;
pToken->eCode = pFound->eCode;
pToken->eEdge = pFound->eEdge;
return i;
}
pToken->n = i;
if( pik_find_class(pToken)!=0 ){
pToken->eType = T_CLASSNAME;
}else{
pToken->eType = T_ID;
}
return i;
}else if( c>='A' && c<='Z' ){
for(i=1; (c = z[i])!=0 && (isalnum(c) || c=='_'); i++){}
pToken->eType = T_PLACENAME;
return i;
}else if( c=='$' && z[1]>='1' && z[1]<='9' && !isdigit(z[2]) ){
pToken->eType = T_PARAMETER;
pToken->eCode = z[1] - '1';
return 2;
}else if( c=='_' || c=='$' || c=='@' ){
for(i=1; (c = z[i])!=0 && (isalnum(c) || c=='_'); i++){}
pToken->eType = T_ID;
return i;
}else{
pToken->eType = T_ERROR;
return 1;
}
}
}
}
/*
** Return a pointer to the next non-whitespace token after pThis.
** This is used to help form error messages.
*/
static PToken pik_next_semantic_token(PToken *pThis){
PToken x;
int sz;
int i = pThis->n;
memset(&x, 0, sizeof(x));
x.z = pThis->z;
while(1){
x.z = pThis->z + i;
sz = pik_token_length(&x, 1);
if( x.eType!=T_WHITESPACE ){
x.n = sz;
return x;
}
i += sz;
}
}
/* Parser arguments to a macro invocation
**
** (arg1, arg2, ...)
**
** Arguments are comma-separated, except that commas within string
** literals or with (...), {...}, or [...] do not count. The argument
** list begins and ends with parentheses. There can be at most 9
** arguments.
**
** Return the number of bytes in the argument list.
*/
static unsigned int pik_parse_macro_args(
Pik *p,
const char *z, /* Start of the argument list */
int n, /* Available bytes */
PToken *args, /* Fill in with the arguments */
PToken *pOuter /* Arguments of the next outer context, or NULL */
){
int nArg = 0;
int i, j, sz;
int iStart;
int depth = 0;
PToken x;
if( z[0]!='(' ) return 0;
args[0].z = z+1;
iStart = 1;
for(i=1; i<n && z[i]!=')'; i+=sz){
x.z = z+i;
sz = pik_token_length(&x, 0);
if( sz!=1 ) continue;
if( z[i]==',' && depth<=0 ){
args[nArg].n = i - iStart;
if( nArg==8 ){
x.z = z;
x.n = 1;
pik_error(p, &x, "too many macro arguments - max 9");
return 0;
}
nArg++;
args[nArg].z = z+i+1;
iStart = i+1;
depth = 0;
}else if( z[i]=='(' || z[i]=='{' || z[i]=='[' ){
depth++;
}else if( z[i]==')' || z[i]=='}' || z[i]==']' ){
depth--;
}
}
if( z[i]==')' ){
args[nArg].n = i - iStart;
/* Remove leading and trailing whitespace from each argument.
** If what remains is one of $1, $2, ... $9 then transfer the
** corresponding argument from the outer context */
for(j=0; j<=nArg; j++){
PToken *t = &args[j];
while( t->n>0 && isspace(t->z[0]) ){ t->n--; t->z++; }
while( t->n>0 && isspace(t->z[t->n-1]) ){ t->n--; }
if( t->n==2 && t->z[0]=='$' && t->z[1]>='1' && t->z[1]<='9' ){
if( pOuter ) *t = pOuter[t->z[1]-'1'];
else t->n = 0;
}
}
return i+1;
}
x.z = z;
x.n = 1;
pik_error(p, &x, "unterminated macro argument list");
return 0;
}
/*
** Split up the content of a PToken into multiple tokens and
** send each to the parser.
*/
void pik_tokenize(Pik *p, PToken *pIn, yyParser *pParser, PToken *aParam){
unsigned int i;
int sz = 0;
PToken token;
PMacro *pMac;
for(i=0; i<pIn->n && pIn->z[i] && p->nErr==0; i+=sz){
token.eCode = 0;
token.eEdge = 0;
token.z = pIn->z + i;
sz = pik_token_length(&token, 1);
if( token.eType==T_WHITESPACE ){
/* no-op */
}else if( sz>50000 ){
token.n = 1;
pik_error(p, &token, "token is too long - max length 50000 bytes");
break;
}else if( token.eType==T_ERROR ){
token.n = (unsigned short)(sz & 0xffff);
pik_error(p, &token, "unrecognized token");
break;
}else if( sz+i>pIn->n ){
token.n = pIn->n - i;
pik_error(p, &token, "syntax error");
break;
}else if( token.eType==T_PARAMETER ){
/* Substitute a parameter into the input stream */
if( aParam==0 || aParam[token.eCode].n==0 ){
continue;
}
token.n = (unsigned short)(sz & 0xffff);
if( p->nCtx>=count(p->aCtx) ){
pik_error(p, &token, "macros nested too deep");
}else{
p->aCtx[p->nCtx++] = token;
pik_tokenize(p, &aParam[token.eCode], pParser, 0);
p->nCtx--;
}
}else if( token.eType==T_ID
&& (token.n = (unsigned short)(sz & 0xffff),
(pMac = pik_find_macro(p,&token))!=0)
){
PToken args[9];
unsigned int j = i+sz;
if( pMac->inUse ){
pik_error(p, &pMac->macroName, "recursive macro definition");
break;
}
token.n = (short int)(sz & 0xffff);
if( p->nCtx>=count(p->aCtx) ){
pik_error(p, &token, "macros nested too deep");
break;
}
pMac->inUse = 1;
memset(args, 0, sizeof(args));
p->aCtx[p->nCtx++] = token;
sz += pik_parse_macro_args(p, pIn->z+j, pIn->n-j, args, aParam);
pik_tokenize(p, &pMac->macroBody, pParser, args);
p->nCtx--;
pMac->inUse = 0;
}else{
#if 0
printf("******** Token %s (%d): \"%.*s\" **************\n",
yyTokenName[token.eType], token.eType,
(int)(isspace(token.z[0]) ? 0 : sz), token.z);
#endif
token.n = (unsigned short)(sz & 0xffff);
if( p->nToken++ > PIKCHR_TOKEN_LIMIT ){
pik_error(p, &token, "script is too complex");
break;
}
pik_parser(pParser, token.eType, token);
}
}
}
/*
** Parse the PIKCHR script contained in zText[]. Return a rendering. Or
** if an error is encountered, return the error text. The error message
** is HTML formatted. So regardless of what happens, the return text
** is safe to be insertd into an HTML output stream.
**
** If pnWidth and pnHeight are not NULL, then this routine writes the
** width and height of the <SVG> object into the integers that they
** point to. A value of -1 is written if an error is seen.
**
** If zClass is not NULL, then it is a class name to be included in
** the <SVG> markup.
**
** The returned string is contained in memory obtained from malloc()
** and should be released by the caller.
*/
char *pikchr(
const char *zText, /* Input PIKCHR source text. zero-terminated */
const char *zClass, /* Add class="%s" to <svg> markup */
unsigned int mFlags, /* Flags used to influence rendering behavior */
int *pnWidth, /* Write width of <svg> here, if not NULL */
int *pnHeight /* Write height here, if not NULL */
){
Pik s;
yyParser sParse;
memset(&s, 0, sizeof(s));
s.sIn.z = zText;
s.sIn.n = (unsigned int)strlen(zText);
s.eDir = DIR_RIGHT;
s.zClass = zClass;
s.mFlags = mFlags;
pik_parserInit(&sParse, &s);
#if 0
pik_parserTrace(stdout, "parser: ");
#endif
pik_tokenize(&s, &s.sIn, &sParse, 0);
if( s.nErr==0 ){
PToken token;
memset(&token,0,sizeof(token));
token.z = zText + (s.sIn.n>0 ? s.sIn.n-1 : 0);
token.n = 1;
pik_parser(&sParse, 0, token);
}
pik_parserFinalize(&sParse);
if( s.zOut==0 && s.nErr==0 ){
pik_append(&s, "<!-- empty pikchr diagram -->\n", -1);
}
while( s.pVar ){
PVar *pNext = s.pVar->pNext;
free(s.pVar);
s.pVar = pNext;
}
while( s.pMacros ){
PMacro *pNext = s.pMacros->pNext;
free(s.pMacros);
s.pMacros = pNext;
}
if( pnWidth ) *pnWidth = s.nErr ? -1 : s.wSVG;
if( pnHeight ) *pnHeight = s.nErr ? -1 : s.hSVG;
if( s.zOut ){
s.zOut[s.nOut] = 0;
s.zOut = realloc(s.zOut, s.nOut+1);
}
return s.zOut;
}
#if defined(PIKCHR_FUZZ)
#include <stdint.h>
int LLVMFuzzerTestOneInput(const uint8_t *aData, size_t nByte){
int w,h;
char *zIn, *zOut;
unsigned int mFlags = nByte & 3;
zIn = malloc( nByte + 1 );
if( zIn==0 ) return 0;
memcpy(zIn, aData, nByte);
zIn[nByte] = 0;
zOut = pikchr(zIn, "pikchr", mFlags, &w, &h);
free(zIn);
free(zOut);
return 0;
}
#endif /* PIKCHR_FUZZ */
#if defined(PIKCHR_SHELL)
/* Print a usage comment for the shell and exit. */
static void usage(const char *argv0){
fprintf(stderr, "usage: %s [OPTIONS] FILE ...\n", argv0);
fprintf(stderr,
"Convert Pikchr input files into SVG. Filename \"-\" means stdin.\n"
"All output goes to stdout.\n"
"Options:\n"
" --dark-mode Generate \"dark mode\" output\n"
" --dont-stop Process all files even if earlier files have errors\n"
" --svg-only Emit raw SVG without the HTML wrapper\n"
);
exit(1);
}
/* Send text to standard output, but escape HTML markup */
static void print_escape_html(const char *z){
int j;
char c;
while( z[0]!=0 ){
for(j=0; (c = z[j])!=0 && c!='<' && c!='>' && c!='&'; j++){}
if( j ) printf("%.*s", j, z);
z += j+1;
j = -1;
if( c=='<' ){
printf("<");
}else if( c=='>' ){
printf(">");
}else if( c=='&' ){
printf("&");
}else if( c==0 ){
break;
}
}
}
/* Read the content of file zFilename into memory obtained from malloc()
** Return the memory. If something goes wrong (ex: the file does not exist
** or cannot be opened) put an error message on stderr and return NULL.
**
** If the filename is "-" read stdin.
*/
static char *readFile(const char *zFilename){
FILE *in;
size_t n;
size_t nUsed = 0;
size_t nAlloc = 0;
char *z = 0, *zNew = 0;
in = strcmp(zFilename,"-")==0 ? stdin : fopen(zFilename, "rb");
if( in==0 ){
fprintf(stderr, "cannot open \"%s\" for reading\n", zFilename);
return 0;
}
while(1){
if( nUsed+2>=nAlloc ){
nAlloc = nAlloc*2 + 4000;
zNew = realloc(z, nAlloc);
}
if( zNew==0 ){
free(z);
fprintf(stderr, "out of memory trying to allocate %lld bytes\n",
(long long int)nAlloc);
exit(1);
}
z = zNew;
n = fread(z+nUsed, 1, nAlloc-nUsed-1, in);
if( n<=0 ){
break;
}
nUsed += n;
}
if( in!=stdin ) fclose(in);
z[nUsed] = 0;
return z;
}
/* Testing interface
**
** Generate HTML on standard output that displays both the original
** input text and the rendered SVG for all files named on the command
** line.
*/
int main(int argc, char **argv){
int i;
int bSvgOnly = 0; /* Output SVG only. No HTML wrapper */
int bDontStop = 0; /* Continue in spite of errors */
int exitCode = 0; /* What to return */
int mFlags = 0; /* mFlags argument to pikchr() */
const char *zStyle = ""; /* Extra styling */
const char *zHtmlHdr =
"<!DOCTYPE html>\n"
"<html lang=\"en-US\">\n"
"<head>\n<title>PIKCHR Test</title>\n"
"<style>\n"
" .hidden {\n"
" position: absolute !important;\n"
" opacity: 0 !important;\n"
" pointer-events: none !important;\n"
" display: none !important;\n"
" }\n"
"</style>\n"
"<script>\n"
" function toggleHidden(id){\n"
" for(var c of document.getElementById(id).children){\n"
" c.classList.toggle('hidden');\n"
" }\n"
" }\n"
"</script>\n"
"<meta charset=\"utf-8\">\n"
"</head>\n"
"<body>\n"
;
if( argc<2 ) usage(argv[0]);
for(i=1; i<argc; i++){
char *zIn;
char *zOut;
int w, h;
if( argv[i][0]=='-' && argv[i][1]!=0 ){
char *z = argv[i];
z++;
if( z[0]=='-' ) z++;
if( strcmp(z,"dont-stop")==0 ){
bDontStop = 1;
}else
if( strcmp(z,"dark-mode")==0 ){
zStyle = "color:white;background-color:black;";
mFlags |= PIKCHR_DARK_MODE;
}else
if( strcmp(z,"svg-only")==0 ){
if( zHtmlHdr==0 ){
fprintf(stderr, "the \"%s\" option must come first\n",argv[i]);
exit(1);
}
bSvgOnly = 1;
mFlags |= PIKCHR_PLAINTEXT_ERRORS;
}else
{
fprintf(stderr,"unknown option: \"%s\"\n", argv[i]);
usage(argv[0]);
}
continue;
}
zIn = readFile(argv[i]);
if( zIn==0 ) continue;
zOut = pikchr(zIn, "pikchr", mFlags, &w, &h);
if( w<0 && !bDontStop ) exitCode = 1;
if( zOut==0 ){
fprintf(stderr, "pikchr() returns NULL. Out of memory?\n");
if( !bDontStop ) exit(1);
}else if( bSvgOnly ){
printf("%s\n", zOut);
}else{
if( zHtmlHdr ){
printf("%s", zHtmlHdr);
zHtmlHdr = 0;
}
printf("<h1>File %s</h1>\n", argv[i]);
if( w<0 ){
printf("<p>ERROR</p>\n%s\n", zOut);
}else{
printf("<div id=\"svg-%d\" onclick=\"toggleHidden('svg-%d')\">\n",i,i);
printf("<div style='border:3px solid lightgray;max-width:%dpx;%s'>\n",
w,zStyle);
printf("%s</div>\n", zOut);
printf("<pre class='hidden'>");
print_escape_html(zIn);
printf("</pre>\n</div>\n");
}
}
free(zOut);
free(zIn);
}
if( !bSvgOnly ){
printf("</body></html>\n");
}
return exitCode ? EXIT_FAILURE : EXIT_SUCCESS;
}
#endif /* PIKCHR_SHELL */
#ifdef PIKCHR_TCL
#include <tcl.h>
/*
** An interface to TCL
**
** TCL command: pikchr $INPUTTEXT
**
** Returns a list of 3 elements which are the output text, the width, and
** the height.
**
** Register the "pikchr" command by invoking Pikchr_Init(Tcl_Interp*). Or
** compile this source file as a shared library and load it using the
** "load" command of Tcl.
**
** Compile this source-code file into a shared library using a command
** similar to this:
**
** gcc -c pikchr.so -DPIKCHR_TCL -shared pikchr.c
*/
static int pik_tcl_command(
ClientData clientData, /* Not Used */
Tcl_Interp *interp, /* The TCL interpreter that invoked this command */
int objc, /* Number of arguments */
Tcl_Obj *CONST objv[] /* Command arguments */
){
int w, h; /* Width and height of the pikchr */
const char *zIn; /* Source text input */
char *zOut; /* SVG output text */
Tcl_Obj *pRes; /* The result TCL object */
(void)clientData;
if( objc!=2 ){
Tcl_WrongNumArgs(interp, 1, objv, "PIKCHR_SOURCE_TEXT");
return TCL_ERROR;
}
zIn = Tcl_GetString(objv[1]);
w = h = 0;
zOut = pikchr(zIn, "pikchr", 0, &w, &h);
if( zOut==0 ){
return TCL_ERROR; /* Out of memory */
}
pRes = Tcl_NewObj();
Tcl_ListObjAppendElement(0, pRes, Tcl_NewStringObj(zOut, -1));
free(zOut);
Tcl_ListObjAppendElement(0, pRes, Tcl_NewIntObj(w));
Tcl_ListObjAppendElement(0, pRes, Tcl_NewIntObj(h));
Tcl_SetObjResult(interp, pRes);
return TCL_OK;
}
#ifndef PACKAGE_NAME
# define PACKAGE_NAME "pikchr"
#endif
#ifndef PACKAGE_VERSION
# define PACKAGE_VERSION "1.0"
#endif
/* Invoke this routine to register the "pikchr" command with the interpreter
** given in the argument */
int Pikchr_Init(Tcl_Interp *interp){
Tcl_CreateObjCommand(interp, "pikchr", pik_tcl_command, 0, 0);
Tcl_PkgProvide(interp, PACKAGE_NAME, PACKAGE_VERSION);
return TCL_OK;
}
#endif /* PIKCHR_TCL */
} // end %code